
Retrospective Theses and Dissertations

2007

A virtual engineering framework to support
progressive interaction in engineering design
Balasubramaniam Karthikeyan
Iowa State University

Follow this and additional works at: http://lib.dr.iastate.edu/rtd

Part of the Mechanical Engineering Commons

This Dissertation is brought to you for free and open access by Iowa State University Digital Repository. It has been accepted for inclusion in
Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please
contact digirep@iastate.edu.

Recommended Citation
Karthikeyan, Balasubramaniam, "A virtual engineering framework to support progressive interaction in engineering design" (2007).
Retrospective Theses and Dissertations. 15596.
http://lib.dr.iastate.edu/rtd/15596

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F15596&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F15596&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F15596&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F15596&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=lib.dr.iastate.edu%2Frtd%2F15596&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/rtd/15596?utm_source=lib.dr.iastate.edu%2Frtd%2F15596&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

A virtual engineering framework to support progressive interaction in
engineering design

by

Balasubramaniam Karthikeyan

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Mechanical Engineering

Program of Study Committee:
Kenneth M. Bryden, Major Professor

Daniel A. Ashlock
Carolyn Heising
Ron M. Nelson
Eliot H. Winer

Iowa State University

Ames, Iowa,

2007

Copyright © Balasubramaniam Karthikeyan, 2007. All rights reserved.

UMI Number: 3289398

3289398
2008

Copyright 2007 by
Karthikeyan, Balasubramaniam

UMI Microform
Copyright

All rights reserved. This microform edition is protected against
 unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
 Ann Arbor, MI 48106-1346

All rights reserved.

 by ProQuest Information and Learning Company.

ii

Dedication

To Guru and Krsna

iii

Table of Contents

List of Figures .. vi

List of Tables ... ix

Acknowledgements..x

Abstract .. xi

1. Introduction..1

1.1. Elements of Engineering Design ...1

1.2. Interaction Methods ...5

1.2.1. A Priori Interaction ...6

1.2.2. Posteriori Interaction ..7

1.2.3. Progressive Interaction ..8

1.3. Problem Specific Interaction..10

1.4. Motivation..13

2. Background and Literature Review ...16

2.1. Evolution of Engineering Design...17

2.1.1.Engineering Design Methodology..17

2.1.2. Diffusion of Concepts into Engineering Design ...18

2.1.3. Integration of Mathematics and Scientific Laws...20

2.1.4. Design for X ..21

2.1.5. Engineer - An Innovative Designer...21

2.2. Understanding Engineering Design Process..23

2.2.1.Conceptual Design ...23

2.2.2. Embodiment Design ..24

2.2.3. Detailed Design ...24

2.3. Computers in Engineering Design ...25

2.3.1. Computers in Model Generation ...26

2.3.2. Computers in Analysis ..27

2.4. Virtual Reality in Engineering ...28

2.5. Virtual Engineering..31

iv

2.6. Engineering Optimization..34

2.6.1. Example Problem ..36

2.6.2. Optimization Techniques ..39

2.7. Evolutionary Algorithms ...41

2.7.1. Implementation of Evolutionary Algorithms ..44

2.8. Interactive Engineering Optimization..48

2.8.1. Unguided Interactive Optimization ...49

2.8.2. Human-guided Interactive Optimization...51

2.9. Summary ..54

3. Current Trends in Human Computer Interaction and Engineering Optimization................55

3.1.Human Interaction Systems in Engineering ...55

3.2.Scope of this Work..59

4. Problem Description ..63

4.1. Interactive Image Segment Optimization - ProblemDescription.............................64

4.1.1. Low Impact Image Segmentation..67

4.2. Shape Optimization of a Finned Dissipater - Problem Description.........................70

4.2.1. Evolutionary Algorithms for Fin Shape Optimization71

4.2.2. Description of Fin Setup..72

4.2.3. Governing Equations...74

4.3. Interactive Analysis and Optimization of Mixing Nozzle - Problem Description...77

4.3.1. Evolutionary Algorithms for Optimum Nozzles ...80

4.3.2. Description of Nozzle Setup..80

5. Progressive Designer Interaction ...82

5.1. VE-Suite...82

5.2. VE-Suite Structure ...83

5.3. VE-Suite API ...85

5.3.1. VE-Conductor ...86

5.3.2. VE-CE ...86

5.3.3. VE-Xplorer..87

5.4. Requirements of Interactive Environment ...88

v

5.5. Implementation of Progressive Interaction..89

5.5.1. Parameters for Interactive Optimization ...91

5.5.2. Computational Engine...96

5.5.3. Interactive Visual Analysis ...96

5.6. Contribution of this Work to VE-Suite..98

5.6.1. Inputs to VE-Conductor ..98

5.6.2. Inputs to VE-CE ..99

6. Implementation of Image Segmentation and Optimization ...101

6.1. Designer Preference Module..101

6.2. Interactive Optimization Module...108

6.3. Interactive Segmentation Visualization ...115

7. Implementation of Progressive Interaction System for Shape Optimization.....................117

7.1. Designer Preference Module..117

7.2. Interactive Optimization Module...121

7.3. Interactive Visual Analysis ..123

8. Implementation of Progressive Interaction System for Nozzle Optimization125

8.1. Designer Preference Module..125

8.2. Interactive Optimization Module...131

9. Results and Discussion ..136

Part (a). Image Segmentation and Optimization...136

Part (b). Shape Optimization of the Finned Heat Exchanger..147

Part (c). Interactive Nozzle Design...159

Appendix..161

A 1. Example Setup File for the Nozzle Project ...161

A 2. Fitness Values of First Degree Fin Profile..167

A 3. Fitness Values of Second Degree Fin Profile ...168

A 4. Fitness Values of Third Degree Fin Profile ..169

A 5. Fitness Values of Fourth Degree Fin Profile ..170

References..171

vi

List of Figures

1.1. A Priori Preference Articulation ...6

1.2. Posteriori Preference Articulation ..8

1.3. Progressive Preference Articulation..9

1.4. Designer Interaction Map..11

2.1. Basic Module in the Design Process...18

2.2. Comparison between the Scientific Method and the Design Method.............................19

2.3. Implementation Framework of a Virtual Engineering System ..33

2.4. Schematic Representation of a Cylindrical Tank...37

2.5. Flowchart of Evolutionary Algorithm Process ..43

2.6. Representation of a Solution in an EA...45

2.7. Single Point Crossover...46

2.8. Single Point Mutation ..46

2.9. Examples of Cycle, Petersen, Torus, and Hypercube Graphs..48

4.1. Continuous-tone Aerial Survey Image...65

4.2. Standard Voronoi Tiling and Weight Voronoi Tessellations...69

4.3. Solution Representation for Evolutionary Optimization..70

4.4. Schematic Diagram of the Fins ..73

4.5. Modeled Fin ...74

4.6. CAD Model of a Hydraulic Mixing Nozzle...78

4.7. Simple Cross-sectional View of Hydraulic Nozzle ...79

5.1. Architecture of VE-Suite..85

5.2. Progressive Interaction Using VE-Suite ..90

5.3. Registering Parameters for GUI-Computational Unit Communication..........................91

5.4. Design Setup and Constraint File Information...92

5.5. High-level Parameter Setup Dialog ...93

5.6. Design Setup File Generator ..93

5.7. Low-level Parameter Setup Dialog ..94

5.8. Interactive Fin Profile Setup Design Canvas ...95

5.9. Visual Output of Velocity Distribution in a Third Degree Fin Profile97

vii

6.1. Designer Preference Module - Main Window ...102

6.2. Variable Registration Code ..103

6.3. High-level Parameter Setup User Interface..104

6.4. Design Constraints for an Aerial Survey Image ..104

6.5. Input Image File Setup and Constraint File Generation...105

6.6. Interactive Image Segmentation Canvas..107

6.7. Setparams Function of the Computational Unit..111

6.8. Loading Initial Population for the Optimization Runs..112

7.1. Designer Preference Module - Main Window ..117

7.2. Registration of Parameters for Shape Optimization..118

7.3. Design Setup File Generation ...119

7.4. High-level Parameter Setup Dialog ..120

7.5. Call for Fitness Evaluation..122

7.6. Temperature Distribution in a Third Degree Fin Profile ..124

8.1. Designer Preference Launcher for Nozzle ..126

8.2. Low-level Parameter Setup Dialog ...126

8.3. Designer Interface for High-level Nozzle Parameters ..127

8.4. CFD Physical Parameters Setup Dialog..128

8.5. CFD Flow Parameters Setup Dialog...128

8.6. CFD Mesh Parameters Setup Dialog ..129

8.7. Solver Parameters Setup Dialog..129

8.8. Interactive Nozzle Profile Canvas...130

8.9. Implementation to Handle Designer Interactive Nozzle Population.............................132

8.10. Calls for Nozzle Fitness Evaluation ..133

8.11. Code Fragment for Evolutionary Mating Operations ..135

9.1.Test Images for Segmentation and Optimization..137

9.2. Comparison of Evolutionary Optimization runs for Garden Image...............................139

9.3. Comparison of Optimization Runs for Lena Image...139

9.4. Comparison of Optimization Runs for Greens Image..140

9.5. Comparison of Optimization Runs for Deere Image ...140

viii

9.6. Comparison of Garden Image Segments During Evolutionary Optimization142

9.7. Comparison of Lena Image Segments During Evolutionary Optimization143

9.8. Comparison of Greens Image Segments During Evolutionary Optimization................144

9.9. Comparison of Aerial Image Segments During Evolutionary Optimization145

9.10. Results of the Evolutionary Runs on the First Degree Fin Profile...............................149

9.11. Results of the Evolutionary Runs on the Second Degree Fin Profile150

9.12. Results of the Evolutionary Runs on the Third Degree Fin Profile150

9.13. Results of the Evolutionary Runs on the Fourth Degree Fin Profile151

9.14. Best Fin Profiles for degree 1 to 4 using Random Population.....................................153

9.15. Best Fin Profiles for degree 1 to 4 using Designer Interactive Population..................154

9.16. Best Fin Profiles for degree 1 to 4 using Human Subjects’ Interaction.......................155

9.17. Scalar Parameter Distribution in Designer Generated 3rd Degree Fin Profile155

9.18. Description of Maximum Velocity Region...157

9.19. Comparison of Initial Fitness Values of Nozzle Population...159

ix

List of Tables

9.1. Details of the Test Images...137

9.2. Average Time to Complete One Evolutionary Optimization Run................................157

x

Acknowledgements

I would like to express my heartfelt gratitude and appreciation to my major professor,

Dr. Kenneth “Mark” Bryden, for his encouragement, guidance and support throughout my

doctoral studies. I am extremely grateful to Dr. Daniel A. Ashlock for his valuable inputs in

the inter-disciplinary areas like Computational Geometry, and Evolutionary Optimization

techniques. The encouragement and valuable feedback from Dr. Carolyn Heising, Dr. Eliot

H. Winer and Dr. Ron M. Nelson are sincerely acknowledged. I owe my thanks to Dr. Judy

M. Vance who formally introduced me to the world of Computer Graphics and Geometric

Modeling that forms the basis of this research work. The excellent group dynamics and

support provided by my colleagues from Dr. Bryden research group deserve special

appreciation. I am indebted to all my friends and well-wishers for their moral support while I

went through ups and downs during my doctoral studies. The significant role played by my

wife in assisting me in my PhD process is duly recognized. Last, but not the least, I would

like to thank my parents for their patience, prayers, and complete confidence in me while I

pursued my doctoral studies.

xi

Abstract

Engineering design encompasses a series of non-trivial decision making phases in

generating initial solutions, developing mathematical models, performing analysis, and

optimizing designs. Engineering analysis and optimization are the phases that often

significantly slow down the design process. Thorough designer exploration on the solution

space increases the likelihood of determining the most feasible solution but, at the expense of

longer lead times. The exploratory capabilities of the designer could be enhanced by creating

an interactive virtual engineering framework. This research presents progressive interaction

with the designer-in-the-loop whose intelligence is blended with the computational power to

suitably control the optimization. Progressive interaction is a human-guided preference

articulation method where the designer intelligence continuously controls the engineering

analysis and optimization by visualization, modification and controlled re-optimization.

Based on the designer’s knowledge and the knowledge available from the interaction system,

the designer preferences can be modified anytime to expedite optimization. Progressive

interaction not only helps the designer discover the hidden relationship between the decision

variables but it also uncovers the implicit constraints and other performance limitations of the

design. In summary, this research work proposes human-guided, progressive interaction as a

solution to complex engineering optimization problems. The proposed solution is

demonstrated using three test cases: 1. Interactive image segmentation and optimization, 2.

Designer interaction to support shape optimization of a finned dissipater, and 3. Interactive

analysis, optimization and design of hydraulic mixing nozzle.

 1

CHAPTER 1. INTRODUCTION

The decision making process, in general, can be split into four main phases:

intelligence, design, choice, and review [Simon, 1960]. Identification of the decision problem

and collection of relevant information is done in the intelligence phase. After initial

screening, the design phase generates smaller number of decision alternatives for further

consideration. In the choice phase, detailed analysis is performed on the solutions that were

short-listed from the design phase. The solution chosen is implemented in the review phase

[Lotov et al., 2004]. The set of tasks involved within each phase of the decision making

process are problem and domain specific. Decision-making encompasses a wide range of

application areas including business, economics, science, engineering, medicine, and

geographical information systems. This research focuses on the decision- making issues

pertinent to engineering. Within engineering decision-making is applicable to a wide variety

of areas, including product design, analysis, manufacturing, logistics, marketing, sales. Each

area requires specialized research to completely address their unique decision making issues.

This research focuses on the decision-making issues within engineering design. Engineering

design has been chosen for this research because it forms the fundamental building block of

product development process. In addition, the critical decisions made during the engineering

design phase have their impact on the product throughout its life cycle.

1.1 Elements of Engineering Design

Engineering design and decision-making are so intertwined that it has been suggested

that all engineering design problems can be considered as decision making problems [Simon,

 2

1969]. In addition, the terms “engineering decision-making” and “engineering design” are

used interchangeably in most engineering design literature [Mistree and Allen, 1997].

Engineering design is a complex, non-trivial, and usually an iterative process where the

knowledge available to the designer increases with time. Since the early 1960s many versions

of engineering design tasks have been prescribed. Some researchers prescribed only four

tasks, whereas others have decomposed engineering design into dozens of sub-tasks [Voland,

1999]. In this research work, the tasks considered for engineering design are problem

definition, initial solution development, modeling, analysis and optimization. Engineering

analysis and optimization are the tasks that are often the most time consuming and can

significantly slow down the engineering design process. This research work is aimed at the

development of interaction methods to facilitate engineering analysis and optimization.

An overall understanding of the engineering design process, in general, and in-depth

understanding of the analysis and optimization tasks, helps in providing an appropriate

engineering solution. The rest of this section is dedicated for the brief discussion on

engineering design tasks.

Problem definition. The need for engineering design mostly arises due to one or

more of the following, viz., to address the health, safety, or quality concerns of the public, to

eliminate shortcomings in the original design or fabrication by incorporating new technology

and manufacturing methods, to keep pace with the competition, and to reduce costs [Voland,

1999]. Once the need for engineering design is clearly identified, the designer is involved in

problem definition. Problem definition includes the listing of customer specifications, the

establishment of target product specifications, the preliminary analysis on the competitors’

product(s), the design issues with the existing product(s), and the list of constraints and trade-

 3

offs. The quality of the engineering design depends on the clarity of problem definition.

Hence, this task is critical. More details regarding this phase of engineering design can be

accessed from [Ertas and Jones, 1996; Dieter, 2000].

Initial solution development. Developing good initial solutions is critical as the final

design depends on the appropriateness of the initial solutions. Based on the designers’

thinking perspective, the engineering design is subdivided into converging and diverging

thinking. During the initial solution development, diverging thinking is applied to explore a

variety of feasible design alternatives. The goal of the designer is to generate a number of

candidate solutions which might not be optimal [Walker et al., 1991]. Initial solution

development is a non-trivial task as the designers often have to work with incomplete

information on an ill-defined problem, especially when a new product is developed. Past

experience or a priori knowledge in the design of similar products facilitates the

development of appropriate initial solutions.

Modeling. A model is an idealization or simplified representation of a system that is

being developed. The models aid in the analysis of the design problems, for example control

volume in a thermodynamic system is a simplified representation of the system. Designers

generate a variety of models to represent the problem, to acquire knowledge, and to explore

alternative solutions. Symbolic models describe the design using words, numbers, or

mathematical equations [Birmingham et al., 1997]. Designers create the most common

among the models, the mathematical models, with a hope to simulate the real physical system

accurately. Mathematical modeling is the starting place for engineering optimization.

Mathematical models help the designers and the analysts to understand the objective

functions and the constraints present in the problem. In the initial stages of design, due to

 4

incomplete knowledge on the product the designers use their a priori knowledge to develop

simplified mathematical models using assumptions. As the design process proceeds, the

designer knowledge increases resulting the development of more accurate models.

Analysis. Engineering solutions undergo changes from one design generation to the

next. Even within the same generation the solutions undergo major changes while moving

along the engineering design process. Analysis is the stage where the performance of the

designed product or system is verified against the design objectives using experimental or

computational methods. The experimental methods of analysis are not preferred due to the

cost, the time needed for development, and the inability to accept changes. Hence, computer-

based analytical tools are preferred by the designer and the analysts. To ensure the acceptable

performance of the designed product various analytical tools are used at different stages of

product development. The most commonly used engineering tools include: computer aided

design (CAD), finite element analysis (FEA), computational fluid dynamics (CFD), and rapid

prototyping. In many cases these tools and others will be combined together to create an

interactive virtual engineering (VE) environment. Virtual engineering is a designer-centered

process that integrates the product models and engineering tools to facilitate interactive

engineering design. These tools not only facilitate the engineering design process but also

predict the product or system performance [Xiao and Bryden, 2004].

Optimization. This is an open-ended, iterative, and non-trivial process that involves

incorporating multiple constraints and conflicting objectives in pursuit of a set of “best”

solutions. Designers may change the design variables, constraints, or even design

requirements. The optimization process will yield multiple feasible solutions. As a final step

in the design process the engineer analyzes the efficacy of the obtained feasible solutions

 5

against the perceived goals of the needed design. If the design goals are met by the current

optimum solution then the optimization is stopped, if not, the next iteration in the pursuit of

identifying an optimum solution begins.

When a complex system is designed, the engineering analysis and optimization are

the two tasks that consumes significant portion of design lead time. Despite such long

exploration the “best” solutions are not always determined. For the want of time the

engineers may opt for limited search space exploration. This compromise may lead to

undesirable results due to the acceptance of sub-optimal solutions. This research focuses on

studying the influence of designer interaction on engineering optimization by exploring

fruitful regions of the search space. The most common interaction methods are reviewed as a

prerequisite to develop designer-centered interaction.

1.2 Interaction Methods

The three most common methods of designers’ (or analysts’) preferences articulation

within the optimization process are a priori, posteriori, or progressive [Van Veldhuizen and

Lamont, 2000]. A priori and posteriori interaction are unguided or computer controlled

search processes, as the designers have almost no control on the solutions returned by the

optimization algorithms other than specifying their preferences before and after the

optimization processes respectively. In most cases, the designer accepts feasible solutions

presented by the optimization algorithms without a thorough exploration (“what-if” analysis)

of various interesting regions of the search space. In contrast, progressive interaction is a

guided or designer controlled search, as the designers’ preferences continuously direct the

 6

computational process. The preference articulation methods are presented in the following

sub-sections.

1.2.1 A priori interaction

Engineering problem

Initial solutions/design

Analysis

Optimization

Preference specification

Decisions/solutions

Designer Interaction Area

Fig 1.1 A Priori Preference Articulation

In a priori interaction the designer explicitly prescribes their preferences before the

optimization process [Branke et al., 2001], as shown in Fig 1.1. The prescribed preferences

narrow down the solution search space and hence, expedite the optimization process en route

to engineering design. For example, a multi-objective optimization problem may be

converted to a single-objective problem based on the designers’ preferences and intuition

without exploring possible alternatives. This interaction type is preferred when the designer

 7

is interested in rapidly determining the preliminary relationship between the decision

variables and the objective function(s). The simplicity and the ease of implementation are the

advantages of a priori interaction. The disadvantage of this interaction is its impracticability

for the design of new, large, and complex systems. The quality of the design directly depends

on the accuracy of the mathematical models.

1.2.2 Posteriori Interaction

In posteriori interaction designers articulate their preference after the complete results

from the optimization are available [Branke et al., 2001], as shown in Fig. 1.2. The designer

preferences are provided to the system based on thorough study of the available alternatives.

This approach is well-suited for optimization problems where the designers have a

reasonable (if not an exact) estimate of the expected solution and the relationship between the

decision variables, objective functions, etc. In essence, the machine generates a palette of

alternatives and the designers select their design from the alternatives. The advantages of

posteriori interaction techniques are its simplicity of implementation, and its applicability

over a wide range of optimization problems. The disadvantage of this interaction technique is

felt when multiple iterative runs are to be conducted. The designers have almost no control

on the search during the optimization process. Redefining the problem, constraints, and

solution requirements can be done only when the current optimization run is completed or

terminated.

 8

Engineering problem

Initial solutions

Analysis

Optimization

Decisions

Preferences

 Designer Interaction Area

Fig 1.2 Posteriori Preference Articulation

1.2.3 Progressive Interaction

Progressive interaction is defined as a human-guided preference articulation method

where the designers’ interaction continuously controls the engineering optimization by

visualization, modification and controlled re-optimization. In progressive interaction designer

preference articulation is done continuously during the optimization process [Branke et al.,

2001], as portrayed in Fig 1.3.

 9

Engineering problem

Initial solutions

Analysis

Optimization

Preferences

If OK

Decisions

Problem redefinition

Designer Interaction Area

Fig 1.3 Progressive Preference Articulation

Based on the current results, the designer can modify their preferences periodically. The

interesting area of the search space that may have been ignored can be explored using this

interaction technique. The advantage of progressive interaction is its capability to handle

engineering optimization involving complex, high fidelity analysis models, such as CFD,

FEA, etc. When the complex analyses models are integrated within the engineering

optimization process the time taken to perform even one optimization run is prohibitively

long. In such a scenario, the progressive designer interaction controls the optimization

algorithm by restricting the search only in the fruitful areas. The major disadvantage of

progressive interaction technique is its implementation complexity.

 10

1.3 Problem Specific Interaction

Engineering analysis and optimization are often the two processes that consume the

most significant portion of product development lead-time. This is even truer when a large

system consisting of sub-systems is to be developed. The larger the system, the higher the

number of decision (or design) variables and hence the greater the complexity. The time for

optimization increases with the problem complexity. The problem complexity arises due to

the high-dimensionality i.e., large number of decision variables, the non-linearity of objective

functions and constraints, and the difficulty to develop mathematical models. The problems

can be classified complex according to the time it takes for an algorithm to solve them. In

principle, there are problems that may be computationally solvable, but in reality, such

problems require large amounts of time and space resources to solve. This introduces the

following questions, 1. can the complex optimization problem be expedited by designer

interaction? 2. and if interactive techniques can expedite optimization then what is the best

interaction method?

At present, there is no one specific interaction technique applicable to all problem

types. The final choice of an appropriate interaction scheme is problem specific. Based on the

understanding from the current interaction techniques the designer interaction map, shown in

Fig. 1.4, is proposed in this research work.

The Zone 1, of Fig. 1.4 indicates less complex problems with fewer objective

functions and decision variables. Due to the lower level of complexity in the problem, the

designers can develop the mathematical models using their a priori knowledge. The designer

is aware of the relationship between the objective functions and their decision variables.

Using this knowledge the designer can develop a composite objective function that takes into

 11

account all the objective functions based on their weights. A priori interaction will suffice for

these problems.

Low Complexity
More Objectives

Posteriori Interaction

 II

Low Complexity
Fewer Objectives

Priori Interaction

 I

High Complexity
More objectives

Progressive Interaction

 IV

High Complexity
Fewer Objectives

Posteriori Interaction

 III

Number of Objectives

 Complexity

Fig 1.4 Designer Interaction Map

In Zone II, although the problems have a larger number of objective functions, due to

the simplicity of the objective functions and constraints the problems are less complex. In

this case the relationship between the decision variables and the decision variables are simple

and posteriori designer interaction suffices.

Zone III deals with the problems those have fewer objective functions when

compared to those in Zone II. Due to the complex relationships between the large number of

decision variables, and objective functions, the problems are time consuming to solve. With a

few computational runs the designer can gain an understanding of the nature of the problem,

 12

the interesting areas of the search space, etc. For the problems in Zone II and III, the

posteriori interaction approach is preferred. The designer has the flexibility to delay the

preference articulation until the complete results from the optimization are available.

In Zone IV, the problems have a large number of conflicting objective functions. Due

to complex relationship between the objective functions, and constraints and the unknown

relationships between decision variables these optimization problems become extremely

challenging to solve. Understanding the implicit constraints and relationship from the

experimental optimization runs may not be feasible, as the computational runs might take

days, weeks, or months. For such complex problems, the exploration should be restricted to

fruitful areas of the search space using designer intelligence. During such exploration,

objective functions may need to be added, constraints may need to be hardened or softened to

complete the optimization in a timely fashion. All of these are accomplished with a

continuous interaction between the designer and computational tools. Hence, progressive or

continuous designer interaction is required for this problem. Also the optimized solutions

obtained in this zone are usually starting place for further analysis due to the multiple

intangible constraints. The preliminary understanding of the optimization problem, and the

relationships between the decision variables and the non-linear objective functions are

studied simultaneously. Based on the understanding from the preliminary studies, the

designers’ choice of design variables, objective functions, and constraints are introduced to

the optimization system. This may result in newer and better solutions as the optimization

proceeds. To expedite engineering optimization of these problems greater level of designer

interaction with the optimization system is desired when compared to those in the other three

zones.

 13

1.4 Motivation

The motivation for this research is to explore whether the optimization process can be

expedited by designer interaction. The two prime goals that would be achieved include

expedited engineering optimization and quicker, faster understanding of the design problem.

Due to the available of specific knowledge the designers are superior to computers in areas

like abstract thinking, analysis, and pattern recognition. Based on their a priori knowledge

the designers could control the engineering analysis and optimization tools to operate in

fruitful areas of the design space. Optimization techniques using high-fidelity models, such

as CFD, and FEA, are extensively used in the engineering design today. However, often

these optimization tools are implemented in a way that the designer interaction with the

system is almost negligible during the optimization. Due to the lack of a structured

interaction process, the designers’ intelligence is not optimally blended with the

computational power. Due to the limited computational assistance the designer intelligence is

neither used to expedite the optimization nor to investigate the interesting regions of the

search space. As a consequence the time spent on engineering optimization is often longer

than needed and the best available solution may not be obtained. This situation is particularly

true when large, complex engineering systems, for instance, automotive systems, are

designed with multiple conflicting objectives/disciplines.

Evolutionary algorithms (EAs) are most commonly used in a variety of engineering

optimization problems. EAs are preferred when the wide search space exploration is desired.

These strategies rely upon a number of stochastic operators that maintain a high degree of

exploration resulting in a broad sampling of available solutions. EAs become time-

 14

consuming when the engineering optimization involves high fidelity models such as CFD or

FEA. Parmee [2001] proposed the integration of evolutionary and adaptive search

optimization techniques with other complimentary computational intelligence techniques to

enhance optimization. Despite the availability of a variety of computationally efficient

optimization algorithms the time for engineering optimization involving high fidelity models

are significantly high. The optimization time can be significantly reduced by reducing the

number of calls to the computational solver of the high fidelity analysis or by using models

of reduced fidelity. Using the models of reduced fidelity is inappropriate when the

optimization involves complex thermo-fluid systems. Performing thousands of iterations in

an engineering optimization is not uncommon. The number of calls to the computational

solver is equal to the number of iterations. The calls to the computational solver can be

significantly reduced when the designer intelligence is used to direct the optimization search

in the fruitful areas of the solution space. This can be accomplished only when the designer is

enabled to provide their preferences during optimization. This is the motivation for this

research work. The research question that is answered by this work is: How can design

optimization using high fidelity models, such as CAD, FEA, and CFD models, be

accomplished as quickly and effectively as possible.

Interactive optimization is facilitated when the designer-in-the-loop is enabled to

articulate their preferences during the optimization, to visualize the current results, to control

the input parameters based on the results, and to direct the computations to fruitful areas of

the search space. As discussed in Section 1.2, there are many different methods of

developing an interactive optimization tools. Of the three types of designer interaction,

progressive interaction is preferred because the impact of the variables (or preferences)

 15

provided by the designer can be studied without disturbing the optimization runs. Progressive

interaction expedites the designer understanding of the product and which is particularly

necessary to expedite engineering optimization. The prime goal of this research work is to

integrate the evolutionary optimization techniques, high-fidelity engineering analysis models,

and designer interaction in an immersive virtual engineering environment. The efficacy of

the proposed interaction scheme is demonstrated using the following test cases:

1. Interactive image segmentation and optimization

Evolutionary optimization is controlled by designer interaction to make engineering

decisions using high-dimensional datasets, such as, digital images, within a virtual

engineering environment.

2. Designer interaction to support shape optimization of a finned heat exchanger

Computational fluid dynamics simulations and evolutionary optimization algorithms

are integrated together in a virtual engineering environment that is controlled by the

designer to facilitate the shape optimization of a thermo-fluid system.

3. Interactive analysis, optimization, and design of hydraulic mixing nozzle

Evolutionary optimization technique is coupled with a commercial high-fidelity CFD

package (Star-CD) to generate flow field simulations for all the candidate solutions.

 16

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

The scope of the term “design” has been significantly expanded since 1960s. The

meaning of “engineering design” for engineering students is promulgated by the

accreditation board for engineering and technology (ABET). ABET defines, “Engineering

design is the process of devising a system, component, or process to meet desired needs. It is

a decision making process (often iterative), in which the basic science, mathematics, and

engineering sciences are applied to convert resources optimally to meet a stated objective.

Among the fundamental elements of the design process are the establishment of objectives

and criteria, synthesis, analysis, construction, testing, and evaluation” [ABET, 1995].

Prior to 1960s, the term “design” referred to making drawings on a drafting table

using drafting tools. Most young engineering graduates of 1960s that looked for challenging

work preferred analysis over design [Ertas and Jones, 1996]. The ability of the designer to

draw the product before the manufacturer built it was considered the original contribution to

the design process. At that time, the designers’ first concern was on the geometry that

defined the shape of the product. In early 1960s, the industry and the academia from the US

and Europe recognized the necessity to manage the design process and the overall product

development process [Birmingham et al., 1997]. As a consequence, the engineering design

became the prime area of research interest. The scope, approach, and methodology of

engineering design have significantly changed over the past four decades. Even the role of

the designer has changed from being a support person to being a lead person in the product

development process. Section 2.1 discusses the prime research directions of the past that has

resulted in the present days’ design process and methodology. Section 2.2 presents the

 17

engineering design process in the light of section 2.1. Section 2.3 to 2.5 describes the role of

computers in engineering design followed by the development of advanced technologies in

virtual engineering. Sections 2.6 to 2.8 present engineering optimization techniques as an

inseparable part of engineering design.

2.1 Evolution of Engineering Design

Over the last four decades the engineering design has evolved in a variety of ways. In

this section, the five major areas chosen for the study of evolution of engineering design are:

engineering design methodology, diffusion of concepts from other disciplines, integration of

mathematical and scientific laws, design for X, and the role of designer. These areas are

considered significant as they set the stage for the present days’ research in engineering

design.

2.1.1 Engineering design methodology

Harold Buhl [1960] in his book on creative engineering design proposed a series of

steps applicable for most engineering design problems. The steps include problem

identification, problem definition, solution development, analysis, synthesis, evaluation, and

presentation. Design research conducted in early 1960s worked to identify and develop

solutions processes pertinent to each step in engineering. Such research work resulted in

overall management of engineering design process [Jones and Thornley, 1963]. Asimov

[1962] was one of the first researchers to propose the basic modules of engineering design.

Asimov also presented a detailed description of the complete design process which he called

the morphology of design. Asimov described the morphology of design in seven phases:

conceptual design, embodiment design, detailed design, planning for manufacture, planning

 18

for distribution, planning for use, planning for retirement of the product. The scope of our

research work is to expedite the engineering design process. Hence, only the first three

phases are considered in detail in future sections. Fig. 2.1 shows the basic modules in the

design process proposed by Asimov.

Fig. 2.1 Basic Module in the Design Process (Asimov, 1962)

2.1.2 Diffusion of concepts into engineering design

The research on engineering design also borrowed ideas from other disciplines that

were matured. This was evident from the work of Hill [1970]. Hill compared the scientific

method and the design method. A shown in Fig. 2.2 the scientific method starts with a body

of existing knowledge. A hypothesis is formulated due to their scientific curiosity or interest

to understand certain theory. The hypothesis is subjected to logical analysis that either

confirms or denies it. Due to the flaws or inconsistencies often the hypothesis may have to be

Y

 Next
Step

N

General
Information

Design
operation

Feedback loop
Evaluation

Outcome Specific

Information

 19

changed in an iterative process. The next steps in the scientific method are self-explanatory.

Design method is similar to the scientific method as it starts with the knowledge of the state-

of-the-art. This includes knowledge on devices, components, materials, manufacturing

methods, market and economic conditions. Scientific curiosity is replaced by the

identification of the needs of the society in the design method. The needs are conceptualized

as some kind of model. The design concept is subjected to an iterative feasibility analysis

until an acceptable product is developed.

Fig. 2.2 Comparison between the scientific method and the design method

C
om

m
un

ic
at

io
n

 Existing knowledge

 Scientific curiosity

 Hypothesis

 Logical analysis

 Proof

A
cc

ep
ta

nc
e

State of the art

 Need identification

 Conceptualization

 Feasibility analysis

Production Method

 (a) (b)

(Hill, 1970)

 20

2.1.3 Integration of mathematics and scientific laws

Cain [1969] classified the design projects based on the product size, technological

content, complexity, and skill requirements of the designer. Based on the type of the design

projects, the design personnel and their responsibilities varied. The projects that are

technologically sophisticated and complex necessitated the determination of best design

solution before they were implemented. This opened up the research in the area of

engineering optimization that integrated engineering design and numerical optimization.

Researchers understood the importance of integrating scientific laws and mathematical

equations. The researchers changed the emphasis in engineering design from engineering

design as an art to engineering design as a scientific problem solving technique. The vast

majority of literature indicates that the researchers started focusing on developing numerical

techniques using computers in early 1970s. Thus the mathematical theory of optimization

became highly developed and was applied to design problems. Simon [1969] concentrated on

developing a pool of feasible solutions from where the designer can analyze and determine

the best solution. This technique is comparable to present days’ optimization process. Rittel

and Webber [1973] proposed two types of design problems: ill-structured and well-

structured. Well-structured problems could be described exclusively in terms of numerical

values such that the optimal solutions can be found using available algorithms. Ill-structured

problems may have many possible solutions the “best” solutions to ill-defined problems

depend on the designer priorities. In addition, the ill-structured problems have unclear goals

and incomplete information. Many engineering design problems were classified under ill-

structured problems. The research work in the field of solving ill-structured problems set the

stage for the development of present days’ optimization methods. Simon [1984] suggested

 21

the technique of thorough analysis and problem formulation to convert the ill-structured

problems to well-structured problems.

2.1.4 Design for X

Cain [1969] had presented the concepts of designing for function, use, production and

appearance. The present days’ concepts of design for manufacture and assembly (DFM/DFA)

have their roots in the history but they were documented as early as 1960s. The research

interests on DFM/DFA didn’t intensify until 1980s. Starting in the 1980s, the new

approaches for the integrated product design evolved, concurrent engineering. Concurrent

engineering is a systematic approach that focuses on simultaneous development of all aspects

of product development from the initial design to its manufacture, maintenance, and disposal.

Concurrent engineering eliminated the notion of sequential design process. Many

professionals representing one or more areas of product development work together as a team

throughout the design process to ensure the finest product quality in shortest lead time

[Dieter, 2000]. This goal was achieved by avoiding unforeseen obstacles, if any, that would

prevent the fructification of the engineering design. This stemmed the research towards the

concept of design for X. The most common among the design for X include: design for

manufacturing (DFM), and design for assembly (DFA).

2.1.5 Engineer – an innovative designer

The economic, environmental, and political factors necessitated the development of

new technologies in engineering design and manufacturing in 1970s and 1980s. This

motivated the then researchers to consider the design as an innovative process. Holt [1983]

explained innovation in design as “a process which covers the use of knowledge or relevant

information for the creation and introduction of something that is new and useful”. Based on

 22

the level of innovation, the design activity was classified as original design, adaptive design,

and variant design [Pahl and Beitz, 1984]. The adaptive and variant designs are preferred as

they involve minimal risks when compared to the original design. The further research in

innovation was directed towards the innovation strategies by Cooper [1984]. Birmingham et

al., [1997] considered engineering design as innovative process that can be a source of

competitive advantage. The areas design innovation and innovation strategies are considered

out-of-scope for our work. In late 80s, there were some researchers who came up with the

role of the designer. The designers generate ideas for possible design solutions. Secondly,

they evaluate their alternative solutions with regard to the specified requirements and goals.

Finally, they select the most appropriate solution, and communicate their design intent to

other people involved with the product development [Cross, 1989].

As a summary of the literature review on design methodology it is understood the

current days’ core research on design methodology is driven towards expediting the

engineering design tasks, especially the analysis and optimization. The exact steps

undertaken to complete a design project might vary on case-by-case basis but the general

framework of engineering design process has undergone very little changes from Asimov’s

basic model. In addition, the diffusion of computers, numerical techniques, statistical quality

control methods, and manufacturing methods have extended the role of the designer and have

necessitated the core engineering design research to focus on developing specialized tools to

facilitate engineering design. Section 2.2 presents the details of present days’ engineering

design process in terms of tasks, design models, and analytical tools.

 23

2.2 Understanding Engineering Design Process

With a detailed review of design literature in design process and methodology we

understand that there exists three major stages of engineering design process, viz. conceptual

design, embodiment design, and detailed design. These three stages are not discrete, there is

certain overlap between stages and concurrent operations are also possible. The degree of

overlap between the phases of engineering design is dependent on the product [Parmee,

2001].

2.2.1 Conceptual design

The conceptual design stage is comparable to performing a feasibility study. This

process initiates the design by identifying the needs, defining the problem, and exploring a

wide range of design alternatives against the preliminary design intent. The conceptual

design stage demands diverging, or creative thinking from the designer. The designers’

innovation and creativity finds special application in addressing the most uncertain aspects of

conceptual design stage. A systematic engineering design calls for identification of the

design variables, and their influence on the designed product or system performance. To

accomplish this goal, engineers develop predictive models to understand and predict the

performance of the system. The model of the system is reduced by a number of assumptions

to obtain an approximate mathematical (or symbolic) equation set. Simple computer

applications such as spreadsheets can handle such simplified mathematical equation sets and

give the designer the preliminary information on the problem. Due to the lack of designer

knowledge in this stage, there exists a high risk of the engineering design undergoing major

changes. Hence, simplified/approximated mathematical equations that can be solved readily

 24

are preferred. The goal is not to identify one best solution instead, the designer is interested

in identifying a pool of feasible solutions. More details regarding the conceptual engineering

design can be found in [French, 1985].

2.2.2 Embodiment design

This stage focuses on defining the functions of the parts, sub-systems, and the whole

system. In this stage, the designers’ knowledge of the product has significantly, improved

and the risk of undergoing major design changes is substantially reduced. During the

embodiment design stage the emphasis is on generating multiple feasible alternative

solutions by representing the system using coarse models [Parmee, 2001]. The models here

refer to the computer generated CAD models that is used to understand the geometric

constraints, assembly dimensions. These CAD models are used to communicate the current

design to the product design team that designs subsequent products. If the optimization

routines are to be integrated with the analysis tools such as CFD or FEA, the coarse-meshed

analysis is undertaken in this stage.

2.2.3 Detailed design

This stage of design identifies a candidate solution that is considered almost stable. A

single global solution is chosen from a pool of feasible solutions available from the

embodiment design. This brings the designer to the most time consuming stage where the

optimization techniques are coupled with the high-fidelity models. Significant computational

expense is needed to perform complex engineering analysis, such as, CFD and FEA with

fine-sized grids. CFD is a practical tool which can be used to predict the performance of

components of the thermal systems or to propose modifications to the original design in

 25

rehabilitation or upgrading projects. However, the FEA models are much more commonly

used in the design optimization process when compared to the CFD models. Because of the

high computational cost many designers skip the integration of CFD models with the

optimization due to long time to optimization. Hence, optimization algorithms are generally

integrated with lower fidelity models. Engineering optimization that uses high-fidelity

analysis models may take several days to several months to get one optimization run

completed. As a consequence today, CFD is primarily used to provide insight into a limited

number of specific design issues rather than as a design and optimization tool. Hence, one of

the goals in this work is to use CFD in the analysis component for a design and optimization

tool. In such an optimization tool, designer interaction steers the exploration more quickly to

the more fruitful areas of the solution space.

2.3 Computers in Engineering Design

Computers play a significant role in the engineering design process. The productivity

of the designers has significantly improved due to the development of computer-aided design

tools. Initially, the prime objective for the development of the computer tools was to

automate the more routine and tedious tasks involved in the engineering design [Birmingham

et al., 1997]. However today, the computers have become indispensable as they are employed

in assisting the designer in the entire design process from problem selection to

manufacturing, and all the way to the end-product performance. Since this research work

focuses on engineering design the transformation the computers have brought in to this area

is discussed in detail in this section. As discussed in Chapter 1, the tasks applicable for most

engineering design problems include problem definition, initial solution development,

 26

modeling, analysis, and optimization. Throughout all the tasks computers are finding a

spectrum of applications. The role of computers is more prominent in modeling, analysis and

optimization. While in problem definition, and initial solution development the designer

plays the important role. Researchers in the area of engineering design focus on developing

solutions to maximize the use of computers to expedite the modeling, analysis, and

optimization processes.

2.3.1 Computers in model generation

Engineers generate a variety of models to assist them in the design process. Gajda and

Biles [1978] have classified models as static or dynamic models, deterministic or

probabilistic models, and iconic-analog-symbolic models. A static model is one whose

properties do not change over time. Dynamic model considers the time-varying effects within

the system. Deterministic models describe the behavior of the system wherein the outcome of

the event occurs with certainty. In systems, in which the outcome of events is not known with

certainty, probabilistic models are used. Iconic models represent the system as it appears.

Sketches, engineering drawings, maps, photographs all fall into this category. Analogic

models represent certain specific features of the design. Schematic diagrams and flow

diagrams are classified under category, for example shear force and bending moment

diagram. Symbolic models describe the design using words, numbers, or mathematical

equations. For example, the computer models are based on mathematical equations. Using

computer software (or symbolic models) the iconic and analogic models can be created.

Before the advent of computers the term “model” often referred to a physical prototype.

After the inception of computers the term “model” more often refers to a symbolic model. A

 27

model may either be predictive or descriptive. A descriptive model enables the designer to

communicate the details of the system and to understand the system better. A predictive

model is used primarily in engineering to understand and to predict the performance of the

system [Dieter, 2000]. The selected list of advantages of computer generated models include

evaluating a design by simulating certain aspects of its performance, assisting the designers

in the earliest stage of the design especially when the problem is getting defined and concepts

generated. Models are used as a mode of communication between the designer, analyst,

manufacturer, and customer.

2.3.2 Computers in analysis

During the analysis stage a designer compares the performance of the candidate

solutions against the design intent. When a large or complex system is designed for the first

time the designer may not have complete theoretical knowledge on the system. Hence, the

two most common approaches of analysis are experimental and numerical analysis. The

experimental analyses require the development of a physical prototype that is built per the

design specification. The designers’ curiosity or “what-if” analysis cannot be readily done as

the physical prototype has to be modified or developed afresh every time. Although this

process is common in the development of new concept power plant and other complex large

scale projects, it is time-consuming and expensive. Today, the numerical or computational

tools are rapidly replacing the physical prototyping. The application areas of computer within

the engineering design include computer-aided drafting, solid modeling, numerical

optimization, simulation, and analysis. The prime application area of computers in

engineering design is in computer-aided design (CAD). In an interactive process between the

 28

humans and computers an electronic version of the product gets developed. This virtual

model of the product is evaluated using computer-aided engineering (CAE) analysis and

simulation tools such as FEA, and CFD. Upon successful evaluation the designer may either

build a prototype for further testing or sign-off the design to the production [Birmingham et

al., 1997]. However more and more design work being completed without physical

prototypes. Research work by Simpson et al., [1998] focused on building polynomial

approximations for the computationally expensive analysis by applying design of

experiments, response surface models, and regression analysis. The research work of

Simpson was built upon the research work of Chen et al., [1996] that developed the robust

concept exploration method. The robust concept exploration method was developed to

expedite the analysis of design alternatives, and identify the important design drivers.

2.4 Virtual Reality in Engineering

The development of modern computers has tremendously extended the scope of

computers in engineering. The prime area where the high speed computers equipped with

sophisticated graphical devices and interactive devices finds its application is virtual reality

(VR). Though originated in late 1960s the full capability of the VR is still being realized. At

present, VR is attracting more and more research attention due to its capability of visualizing

geometric models, complex mathematical datasets across engineering, sciences, and

business. The scope of this section is restricted to the role of VR in engineering. Engineering

education, prototype development, design visualization, engineering analysis, and conceptual

product development are the areas where VR technologies are widely used. VR is used to

construct a user-centered, three dimensional environment in which abstract and complex

 29

information is visualized in an intuitive and realistic manner. Because of this VR is becoming

an important tool particularly in engineering design.

Engineering design is a non-trivial, iterative task that involves several design changes

before a final decision is made. Display of information is very important to quickly

understand the practical difficulties or advantages of implementing a particular design.

Development of 3 dimensional CAD models was considered the preliminary step in

engineering design. In 1980s, these CAD models were considered superior to the 2

dimensional drawings that were used to represent the engineering parts and assembly. When

the large and complex engineering systems were designed the visualization capabilities

offered by VR technologies were sought. Thus, VR was initially used for real-time

visualization of the 3 dimensional CAD models. Using advanced immersive virtual reality

environments, the designer was able to “walk through” a virtual power plant, to understand,

visualize and communicate the design issues.

Prior to mid-1990s the CAD models prepared externally were imported into the VR

system for visualization. With a goal of combining the CAD model development and design

visualization VR technology was used to generate CAD models internally. JDCAD used a 6

degree of freedom wand to generate product models using the shape and positions of the

primitives [Liang and Green, 1994]. COVIRDS (conceptual virtual design system) was

another design system that created a rough CAD model using voice reorganization and hand

tracking-based user interface. This system generated viable CAD model in real-time for the

conceptual design phase [Dani et al., 1997]. In addition to the CAD model development for

the conceptual design, the VR was used to develop and simulate the performance of a variety

of spatial mechanisms. Vance and her colleagues developed a series of tools for engineering

 30

design, especially in the synthesis of spatial mechanisms. This includes VEMECS [Kraal and

Vance 2001], VRSPATIAL [Vance et al., 2002], and VRNETS [Kihonge et al., 2002].

The visualization capabilities of VR were extended to the support activities of

engineering design: engineering analysis and simulation. Aukstakalnis and Blatner [1992]

developed Virtual Wind Tunnel to simulate a flow field which is very difficult to visualize

through experimental or numerical simulations. Using the VR the researchers could analyze

the effect of the turbulent flow-field by standing inside a virtual wind tunnel. Researchers

from Ford Motor Company visualized the air flow pattern to study the air cooling

performance on engine components [Deitz 1995; Mahoney 1995]. Full scale car crash

worthiness using computer assisted virtual environment was studied by the researchers from

General Motors [Ellis, 1996]. Immersive virtual environment was used to study the influence

of engineering design changes on the downstream activities especially manufacturing.

Manufacturing process simulation was performed using VR to provide insights to product

and process development process. The effects of design changes on the manufacturing

process were studied. Virtual assembly design environment was developed for assembly

planning and evaluation using constrained motion simulation [Jayaram et al., 1999].

Visualizing complex engineering analysis results is an advantage of VR over two

dimensional flat screen media. Active research is underway to extend the VR capabilities by

integrating it with a variety of high-fidelity engineering analysis models such as CFD, and

FEA. CFD data was shown in different visualization methods using IVRESS [Wasfy and

Noor, 2001; Wasfy and Wasfy, 2003].

Although innovative, the industry has been slow to adapt the changes, because of the

lack of trained manpower and high cost to implement the VR tools. This necessitated the

 31

researchers to focus on developing cost effective, portable, easy-to-implement immersive VR

tools. In most current virtual reality applications, the data can only flow from the engineering

tools to the virtual environment for visualization. With a goal of enhancing the capabilities of

the VR a new research area in Virtual Engineering came into the existence. The details

regarding the virtual engineering and its impact in engineering design and decision making is

presented in Section 2.5.

2.5 Virtual Engineering

Virtual engineering (VE) is user-centered, first-person perspective, three dimensional

computer generated engineering environments that seamlessly allow the designer to perform

a wide range of engineering tasks. VE environment couples the product models and

engineering tools to facilitate engineering design, analysis, optimization, operations,

maintenance, training, and disposal. VE can be used to quantitatively and qualitatively

identify the innovative design options. In addition to the visualization the VE techniques are

used to predict the overall product performance. As shown in Fig. 2.3 the VE product models

include geometric models and all the related engineering models, such as CAD. The

engineering tools usually are visual analysis, optimization, and decision making tools. Virtual

engineering allows designers to walk through the product and observe how it works. The

system can also responds to the changes that the designer brings into the system and engages

the human capacity for evaluation and decision making. The basic framework for virtual

engineering is presented in Fig. 2.3. CAD and geometric modeling forms the foundation of a

virtual engineering system. The tools that go along with the CAD and geometric modeling

are classified at the first level because they create the visualization characteristic of the

 32

virtual product being designed. Multidisciplinary analysis and simulation tools, such as CFD

and FEA form the second level which requires interaction capabilities. The top level involves

the decision-making/optimization process. These processes cannot be materialized without

the product data management and analysis. The interactive visual format of the virtual

engineering system help designers develop intuition and understand the product realization

better. At all three levels, designer can visualize the product model and data in the virtual

environment whenever necessary. In a virtual engineering system, designers can control the

geometric and engineering models in a virtual environment, as shown by the double arrowed

lines in Fig. 2.3.

VE tools are developed to facilitate the design cost reduction and rapid product

realization. Yeh [1997] developed an integrated virtual environment for structural shape

design. This includes design specification, sensitivity analysis, and design model

manipulation. The design model manipulation was accomplished by introducing a NURBS-

based volume around the geometric features. On changing the volume of the NURBS, the

product geometry was modified in the virtual environment [Yeh and Vance [1998]. Ryken

and Vance [2000] facilitated engineering design process by integrating analysis and

simulation tools such as FEA in a VE environment. Designers received feedback on the

stress distribution in response to their product geometry modification. VE tools not only help

engineers visualize the geometric shapes of the product, but also to understand complex

operating conditions, for example, a power plant.

 33

Product Data
Management

Distributed Product
Realization

Multidisciplinary Analysis and
Simulation

 CAD/Geometric Modeling

Spatial /Assy.
Config

CAM

Factory
Simulation

Concept Generation

Design

Decision Making/Optimization

Life Cycle Management

Human Factor

Manufacturing
Evaluation

Tests/Verification

Visualization

Fig. 2.3 Implementation Framework of a Virtual Engineering System
[Xiao and Bryden, 2004]

McCorkle et al., [2003] developed CFD visualization tools that focus on helping

engineers resolve product realization problems in an interactive virtual environment. Xiao et

al., [2005] has presented the concept of design-analysis integration in a VE framework using

VE-Suite. VE-Suite enables the seamless coupling of visualization module, computational

engine, and graphical user interface with the high-fidelity analysis models such as CAD,

CFD, and FEA in an immersive virtual reality environment. Huang [2006] developed an

interactive evolutionary design environment using the VE-Suite framework to facilitate

engineering optimization using evolutionary algorithms (EAs) as the optimization algorithm,

and Fluent CFD analysis package as the evaluation mechanism for coal piping system design.

 34

The design process uses an iterative approach that allows design changes to be evaluated on-

the-fly using CFD analysis.

2.6 Engineering Optimization

Optimization is the process of maximizing the desired quantity or minimizing the

undesired one. The term “optimal solution” means the “best” among the feasible solutions for

a given set of objective functions, design variables and constraints. Optimization finds its

application in engineering during the decision making step [Siddall, 1972]. A variety of

optimization methods have been reviewed by Siddall [1979] and those methods were broadly

classified under four main areas: optimization by intuition, optimization by trial-and-error

modeling, optimization by numerical algorithm, and optimization by evolution. Optimization

by intuition is commonly used as a starting place in the design of complex systems.

Optimization by trial-and-error arises when the first feasible design is not the optimal one.

Before the advent of fast computers this technique was the predominant one. Optimization by

numerical algorithm is the area where mathematical theories find its application in

engineering. Optimization by evolution is very popular among the optimization methods,

especially during the conceptual design phase where the designers’ knowledge about the

product or system is limited. Designers prefer wide search space exploration capability using

approximate mathematical models. Evolutionary optimization techniques find its application

in a wide variety of optimization problems due to its broad search space exploration

capabilities.

Optimization theory finds its application in all disciplines of engineering in four

major areas: design of component or systems, planning and analysis of operations,

 35

engineering analysis and data reduction, and control of dynamic systems [Reklaitis, 1983].

Engineering design is a special case of optimization where a set of objectives have to be

optimized while satisfying functional and regional constraints. In most engineering

applications, economic factors such as total capital cost, cost-benefit ratio, etc or

technological factors such as minimum production time, maximum thermal efficiency,

minimum energy utilization, etc are chosen as the criteria for optimization. The optimization

problem modeling a physical system involving only one objective function is called single-

objective optimization. And that with more than one objective function is known as multi-

objective optimization. These objective functions are subjected to functional constraints, also

called as equality constraints, and regional constraints, also known as the inequality

constraints. Optimization strongly depends on the appropriateness of the mathematical model

hence, it is essential to develop the model that includes all the variables and constraints that

influence the operation of the engineering system. The generalized mathematical model for

an optimization problem can be represented as

Minimize F(x) x∈X

Subject to j = 1, 2,…., m1 (functional constraints) h xj() = 0

 g xj() ≤ 0 j = 1, 2,…, m2 (regional constraints) (2.1)

The terms F, h and g are the n-vector objective functions, equality and inequality

constraints respectively. Equation 2.1 illustrates an optimization problem with m1 equality

(or functional) constraints and m2 inequality (or regional) constraints respectively. The term

x is the vector of design or decision variables [x1, x2, … xn], where X indicates the n-

 36

dimensional design space [Papalambros, 1994]. To understand the optimization process and

the common terms used in optimization a simple example problem is presented in Section

2.6.1. Optimization in engineering design has become inevitable and it is facilitated with the

advent of fast computers. Despite the availability of the powerful computers the optimization

still remains to be the most time consuming task in the engineering design. Over the last

three decades many researchers have developed algorithms to expedite engineering

optimization thereby resulting in rich literature. More details related to engineering

optimization can be found in [Siddall 1982; Jaluria, 1998; Deb, 2001; Coello Coello et al.,

2002; Hernandez and Fontan 2002]. A survey of most commonly used optimization

techniques are presented in Section 2.6.2. The most popular optimization technique, the

evolutionary algorithms, is presented in detail in Section 2.7. Many researchers have used

interactive techniques to expedite engineering optimization. The role of interaction in

engineering optimization is presented in detail in Chapter 3.

2.6.1 Example problem

The terms used in Equation 2.1 are described using this simple example problem on

volume optimization of a cylindrical tank. Consider a designer is interested in designing a

sheet metal cylindrical tank to store water of volume V. The objective of the designer is to

optimize the cost of the tank which directly depends on the amount of the metal used.

Design variables. The first step in the optimization problem is the identification of

appropriate set of independent design variables. In this example problem, the design

variables are tank diameter D and its height h.

 37

Objective Functions. The objective functions indicate the goal of the optimization

problem. Therefore, the objective functions have to reflect all relevant system characteristics.

Defining the objective functions is a key issue of importance as the outcome of the

optimization is directly related to the quality of the objective functions. In this example

problem, the objective function is the cost of the sheet metal which is directly related to the

surface area of the sheet metal. The surface area of the tank is given by (A):

()DhDA ππ
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

4
2

2

 (2.2)

If C is the cost of the metal sheet per unit area, then the objective function (F) can be written

as:

F = AxC (2.3)

D

h

Fig. 2.4 Schematic Representation of a Cylindrical Tank

 38

Constraints. The constraints are classified into explicit and implicit constraints. The

explicit and implicit constraints together define the feasible solution space. Explicit

constraints are directly specified when optimization problem is formulated. The implicit

constraints remain unidentified at least until the detailed design and analysis phase. Implicit

constraints exist primarily in the design problems involving continuous variables. The

explicit constraints can further be classified into functional (or equality) constraints and

regional (or inequality) constraints. The functional constraint for this example problem is that

the tank should have a volume V which is given by:

4

2hDV π
= (2.4)

The regional constraints are imposed by the designer based on the assembly requirements,

manufacturing issues, etc. In this problem, the regional constraints are certain preferred

maximum and minimum values for D and h.

maxmin DDD ≤≤

 maxmin hhh ≤≤ (2.5)

To determine the optimum solution for this problem the designer has to choose an

appropriate optimization algorithm. The performance of the optimization algorithm is

problem dependent. Hence, the designer should have sufficient knowledge on their problem

and on the optimization algorithms to select an appropriate optimization algorithm (presented

in Section 2.6.2) that suits their problem.

 39

2.6.2 Optimization techniques

General search and optimization techniques are classified into enumerative,

deterministic and stochastic methods [Coello Coello, 2002]. Enumerative techniques are

exhaustive point-by-point domain search techniques that are inefficient and infeasible for

large search spaces. Deterministic algorithms attempt the search process using problem

domain knowledge unlike the exhaustive enumerative techniques. Greedy algorithms, hill-

climbing algorithms, branch & bound, depth-first, breadth-first, and gradient based methods

are all classified under deterministic approach. Gradient-based methods are most common

among deterministic techniques. This technique is an analytical approach and is applicable to

continuous, twice-differentiable functions. If the optimization involves a large number of

design variables, it can be time consuming to obtain the descent direction and the step size

needed to carry out the optimization process. Deterministic methods are often less effective

when applied to NP-Complete or high-dimensional problems due to the need to have

problem domain knowledge to limit search space [Garey and Johnson, 1979; Goldberg, 1989;

Fogel, 1999; Michalewicz and Fogel, 2000]. The common difficulties in using gradient based

optimization techniques include: dependency on the mathematical models, strong

dependence of convergence on the chosen initial solutions, getting stuck to the sub-optimal

solutions, inextensible to all problem types, infeasible for discrete search space, and

inextensible to parallel computing [Deb, 2001].

Stochastic techniques are preferred to enumerative and deterministic techniques for

engineering optimization problems. Many engineering problems are high-dimensional,

discontinuous, multimodal and/or NP-Complete. These types of problems are termed

irregular [Lamont, 1993]. Because of the difficulty of applying deterministic methods to

 40

irregular problems, generally stochastic methods are used. The stochastic techniques are

more robust in searching the global optimum than deterministic techniques and are faster

than enumerative methods. A selected list of stochastic techniques include simulated

annealing [Kirpatrick et al., 1983], evolutionary algorithms (EAs) [Goldberg, 1989;

Michalewicz, 1996; Back, 1996] and Tabu search [Glover and Laguna, 1997].

Simulated Annealing. The concept of simulated annealing is based on how metals

re-crystallize during annealing process. Initially the annealing process starts with a

disordered liquid at a high temperature. This system is slowly cooled to reach the

thermodynamic equilibrium. As the cooling proceeds, the system returns to more ordered and

frozen ground state. The initial state of the thermodynamic system is analogous to the initial

solution of the optimization problem. The energy equation of the thermodynamic system is

analogous to the objective function, and the ground state is analogous to the global optimum.

Simulated annealing picks up a random solution and moves forward if the selected solution

improves the current optima. If not, the algorithm accepts the solution with a probability

value. This probability value decreases exponentially with time or with the amount by which

the current optimum proceeds towards the global optima. More details regarding the

simulation annealing can be found in [Coello Coella, 2002].

Tabu Search. This is an example of stochastic optimization technique that is

classified under local search method. This method keeps track of visited solutions and the

paths that were used to reach the solutions. This information prevents the algorithm from

exploring the search space that contains sub-optimal or fruitless solutions. Generally this

technique is used in tandem with other optimization methods [Glover and Laguna, 1997].

Tabu search uses a local or neighborhood search procedure to iteratively move from a

 41

solution x to a solution x' in the neighborhood of x, until some stopping criterion has been

satisfied. Tabu search modifies the neighborhood structure of each solution as the search

progresses. The solutions admitted to N * (x), the new neighborhood, are determined through

the use of special memory structures. The search now progresses by iteratively moving from

a solution x to a solution x' in N * (x). The search space that may normally go unexplored by

the other local search procedures can be explored using this technique.

2.7 Evolutionary Algorithms

Evolutionary algorithms (EAs) are the biologically inspired optimization technique

that blends a pair of solutions to create better solutions. EAs are based on the Darwinian

concept of “survival-of-the-fittest”. EAs are the most commonly used stochastic search

optimization technique. Due to the robustness and wide applicability of this technique many

researchers have proposed optimization schemes based on evolutionary algorithms. A wide

variety of advantages is offered by the evolutionary optimization techniques. EAs do not

require derivative information of the objective function in order to find the optimum solution.

During the optimization, EAs explore the entire feasible space and search from different

design points in one run; thus, the probability of finding a local peak instead of the global

peak is reduced significantly. Most real-world engineering optimization problems involve

constraints, multiple conflicting objectives, with large number of decision variables, and ill-

defined design intents. As the number of decision variables increases the search space

widens. Exhaustive search methods are usually slow when it comes to larger search spaces.

Most engineering design problems involve multiple conflicting objectives that do not have

one best solution. The multi-objective optimization problems result in a number of trade-off

 42

optimal solutions. EAs are also an attractive method for multi-objective design applications

being offering “pareto optimal sets” instead of a limited single design point traditionally

provided by other methods. A selected list of engineering problems where EAs were used

include piping layouts [Goldberg, 1983], shape optimization of a pneumatic, low-head,

hydropower device [Parmee, 1990], shape optimization of finned dissipater [Fabbri, 1998],

heat transfer optimization in a cook-stove [Bryden et al., 2003], optimization of high-speed

direct-injection diesel engine [Lee and Reitz, 2003], combustion optimization in the low-

temperature diesel combustion regime [Yun and Reitz, 2005], and coal-piping system

optimization [Huang, 2006].

EAs consist of a population of encoded solutions manipulated by a set of operators

and evaluated by some fitness function. There exists a deep level of similarity between the

engineering design process and the EAs. Understanding this similarity can help the

engineering designer and the EA designer. Engineering design and the EAs are both iterative

process. In the beginning of engineering design process, the designer explores a wide variety

of design solutions as defined by the constraints. The knowledge of the designer increases as

they progress through the engineering design process. Similarly the initial population of the

EAs consists of solutions that may represent the feasible region of the design space. Build

upon the best solutions from the pairs of solutions as the evolution proceeds. Engineering

designer verifies their current design against certain specifications or design intent, if the

design does not meet that specification then the designer moves on to the next iteration.

Similarly, in the EAs, the current best solution is compared against the pre-specified stopping

criteria, if the answer were to be true, the EA process would stop, if not, the EA process

would begin from the beginning, as shown in Fig. 2.5.

 43

Initialize Population

Parent Selection

Crossover

Mutation

Replacement of
offspring

Stopping Criteria?

Finish

Figure 2.5 Flowchart of Evolutionary Algorithm Process [Cantu-Paz, 2000]

During the conceptual design stage the engineering is not completely aware of the

problem-in-hand. Preliminary analysis is conducted to gain some expertise regarding the

product. A wide range of engineering solutions are explored during this stage. The EAs start

with a population of initial solutions that are not exactly the optimum solutions of designers’

interest. EA designer conducts some experimental runs to understand the fitness landscape of

 44

the problem and evaluates the efficacy of the solution method. During this preliminary

numerical experiments the constraints are soften, and out-of-the-box exploration takes place.

Engineering designer gains some insight about the problem from the preliminary analysis and

devises a methodology to transfer the concept to reality. The engineering designer now enters

the embodiment design phase where the individual components, sub-system, and system

dimensions are almost finalized, but the single best solution has not yet been identified.

Similarly the EA designer will be aware of the fitness landscape of the problem, the objective

function and the constraints. The EA designer then needs to finalize the parameter values

e.g., percentage of mutation and crossover, selection and replacement methods. The final

stage of the engineering design process is the detailed design where the engineer is interested

in nailing down the one best solution which will be implemented for production. Engineers

do complete analysis and optimization using appropriate models to ascertain the efficacy of

the final solution. Using the knowledge obtained from numerical experiments, the EA

designer finalizes the process.

2.7.1 Implementation of Evolutionary Algorithms

For the sake of completeness, this section presents the implementation details of the

EAs on the tank optimization problem presented in Section 2.6.1. The implementation details

of the EAs presented in this section is also applicable to the test cases demonstrated as a part

of this research work. A set of random initial population (say 32 solutions) that covers the

entire solution space of the problem is created. The fitness value indicates the performance of

the individual solution. The tank optimization is a cost minimization problem. The solution

that meets the specified functional and regional constrains using the lowest cost is considered

 45

optimum. Every solution (or individual) in the population is represented by a series of design

variables as shown in Fig. 2.6. The subscript 1 indicates the solution id within the population.

Let D1 and h1 represent the diameter and the height of the cylindrical tank. The values of the

design variables are chosen such that they meet the regional constraints. Let the volume,

surface area, and the fitness value of this solution be V1, A1, and F1 respectively.

D1 h1

Fig. 2.6 Representation of a Solution in an EA

The EA population contains a total of 32 solutions each with each solution having a

different set of design variables. Just like biological reproduction, a pair of solutions is

chosen. The Parent1 is chosen at random, the co-parent (Parent2) is chosen using roulette

selection method. The reproduction is achieved using crossover and mutation operators. The

children (new solutions) are inserted into the population and the procedure starts over again

until the stopping criteria are met. Fig. 2.7 shows the simple crossover operation for this

problem. The crossover takes place between the parent 1 and parent 2 as shown the figure to

produce child 1 and child 2 respectively. The purpose of the crossover is for the wider search

space exploration. Since the length of the solution in this problem is 2, a simple crossover

operator is chosen. However, for solutions with longer length random single point or multi-

point crossover can be chosen. The mutation operation is performed on the Child1 and

Child2 to explore the search space locally. Figure 2.8 shows the single point mutation

operation on the Child1.

 46

Parent 1

Parent 2 Child 2

Child 1

D1 h1

D2 h2

D1 h2

D2 h1

Fig. 2.7 Single Point Crossover

h2 (D1-0.05)

Fig. 2.8 Single Point Mutation

Now the fitness values of Child1 and Child2 are estimated based on their surface

areas AC1 and AC2, and the volumes VC1 and VC2. There exists a variety of ways to perform

replacement operation. In this research work, we used roulette replacement, i.e., the child

with higher fitness values will replace their parents in the population. In summary, the parent

selection, crossover, mutation and replacement operations make up one mating event. EAs

would stop either if the pre-specified mating events are completed or if the fitness value of

one or more solutions in the population equals the optimum value of the problem. For more

details on the parent selection, types of crossover, mutation and replacement refer to

[Holland, 1975; Golderg, 1989; and Ashlock, 2006].

 47

EAs are preferred optimization techniques due to their advantages. However, the

disadvantages of the EAs cannot be undermined. The disadvantages of EAs include: loss of

diversity resulting the determination of sub-optimal solutions, and long time for fitness value

evaluation when the computationally demanding CFD analysis are coupled with the

engineering optimization The issues due to the loss of diversity were addressed by imposing

geography in the form of a combinatorial graph on an evolving population. The graph-based

evolutionary algorithms (GBEAs) mimic the behavior of many constraints on mating

observed in biology [Ashlock et al., 1999]. A combinatorial graph or graph, G, is a set of

V(G) of vertices and E(G) of edges where E(G) is a subset of the unordered pairs that can be

drawn from V(G). Two vertices of the graph are neighbors if they are members of the same

edge [West, 1996]. Within this population structure the solutions are held on the vertices of

the combinatorial graphs. GBEAs restrict the rate of information spread within the evolving

population by permitting the reproduction only between the creatures that share a common

edge. This restriction imposed by GBEA increase diversity and prevents premature

convergence to a sub-optimal solution space [Ashlock et al., Accepted]. GBEAs have been

used on a real-world engineering challenge, optimization of temperature distribution in a

third world cooking stove [Urban et al., 2002]. The most commonly used combinatorial

graphs are shown in Fig. 2.9.

 48

Cycle C64 Peterson P32-1

Torus T4-16 Hypercube H6

Fig. 2.9 Examples of Cycle, Petersen, Torus and Hypercube Graphs [Karthikeyan 2003]

The longer time for fitness value evaluation when high fidelity analysis models like

CFD and FEA models are coupled can be addressed by introducing designer interaction. The

designer interaction can narrow down the search space to a manageable size and thereby

reducing the number of futile calls to the high fidelity solvers. To develop a “smart”

evolutionary optimization technique, i.e., the evolutionary algorithms guided by designer

interaction, a thorough understanding of current interaction methods is necessary. Section 2.8

describes the current interaction methods and the research work done by on interactive

engineering optimization.

2.8 Interactive Engineering Optimization

Most real-world engineering optimization problems are complex due to the large

number of decision variables, and multiple (sometimes conflicting) objective functions. The

 49

researchers in the area of multidisciplinary design optimization (MDO) propose breaking

down, or decomposing the large, complex problems into smaller components problems that

can be optimized independently. The most logical breakdown of problem is by their

disciplines [Bloebaum, 1992]. However, the focus of this research is not on decomposing the

problems, but on expediting complex engineering optimization by designer interaction. The

complex systems need not be dimensionally very large, it may include an object as small as

microchip. The designer should have a thorough understanding of internal relationships

between the design variables, constraints and objective function to design them better. If the

number of objective functions is large, then the optimization time cannot be reduced without

designer preference articulation. As discussed in Chapter 1, the a priori and posteriori

preference articulation requires human intervention either before or after all the optimization

runs are done. Hence, these two types of preference articulation are classified under unguided

optimization with one way coupling to human preference. The designers’ knowledge is not

used to guide the optimization process. In contrast, the progressive preference articulation

incorporates the human intelligence in the optimization continuously leading to guided

optimization process, two-way coupling. Designers’ articulate their preferences periodically

to control the optimization and thereby restricting the search only to the fruitful areas.

2.8.1 Unguided interactive optimization

The unguided optimization is sometimes preferred by the designer to come up with

smart initial guesses (or solutions) for a well-defined engineering design problem. This is the

reason a variety artificial intelligence based automatic or self-learning algorithms are being

used with the designer providing their preference before or after the optimization runs.

 50

However, the term automatic or unguided optimization may not be applicable for a complex

system where designers input are considered critical. Most engineering optimization

problems use evolutionary optimization techniques due to its wide search space exploration

capabilities. Initially, the designers’ intent is to come up with a broad range of solutions.

After the evolutionary optimization runs are complete the designers’ preferences are used to

select the optimum solution. The engineering optimization with posteriori interaction are

very common hence, in this section, a selected list of research work done on unguided

interactive optimization using a priori preference articulation is discussed.

In the a priori preference articulation the designers’ prior knowledge is used to restrict

or limit the search to a narrow region. After prescribing their preference initially the designer

initiates a computer to come up with an optimum solution. The physical programming (PP)

method converts a multi-objective problem into a single objective problem by using

preference functions that capture the designer’s preference [Messac, 1996]. Some of the

limitations of the physical programming method include: requirement of a priori selection of

parameters for each of the objective functions, provides information for only one design

scenario, provides no information about the Pareto designs in the neighborhood of the current

design. Deb [1999] uses an analogy from goal programming and allows the designer to

define a goal (a single desired combination of characteristics) towards which the search is

directed. Yukish and his co-workers proposed the goal programming approach for the

multidisciplinary design optimization problems. A novel method of collaborative

optimization was implemented using goal programming approach to facilitate

multidisciplinary design and optimization at the parts, sub-systems, and the system level

[McAllister et al., 2000]. The goal programming approach essentially converts a complex

 51

problem to a single objective problem. This problem can be considered a typical

characteristic of a priori interaction.

Cvetkovic and Parmee [1999] allow the designer to articulate fuzzy preference before

the optimization runs. These fuzzy preferences are turned into specific quantitative

weightings. Each criterion gets a weight wi and a minimum level of dominance τ. Based on

this information the unguided optimization proceeds to find out an optimum solution. The

designer has no intermediate control on these search algorithms. A priori preference

articulated multi-objective evolutionary algorithms allow the designer to specify the maximal

and minimal acceptable weights. These weights are the trade-off for one criterion over the

other. Based on the trade-off information, the maximum and minimum utility functions are

constructed. This a priori information is was used to move the EA towards Pareto-optimal

solutions. This technique was applied on four standard test problems, each with two objective

functions. The results indicated that the a priori preference articulated, algorithm explores

the search space much better and converges much faster towards the optimal [Branke, et al.,

2000; 2001].

2.8.2 Human guided interactive optimization

The inspiration for most interactive optimization evolved from the computational

steering research. Kraemer and Vetter [1998] defined computational steering as, “the online

management of the execution of an application and its resources for the purpose of either

performance improvement or application exploration.” Computational steering is a broad

research area that requires integration of techniques from a wide range of computing

disciplines, including human computer interaction, graphics, visualization, parallel and

 52

distributed systems, and performance evaluation. The computational steering allows the

designer to interactively control the problem parameters during the runtime. The research in

the area of computational steering is done with an assumption that the designers’ knowledge

would help to proceed towards the final answer rapidly [Winer and Bloebaum, 2001]. Based

on the concept of computational steering many researchers have developed computational

steering environments that include VASE [Jablonowski et al., 1993], SCIRun [Parker and

Johnson, 1995], and CUMULVS from Oak Ridge National Laboratory [Geist II et al., 1997].

These computational steering systems require expensive computer hardware and networks to

run and store the vast amounts of data generated. This situation motivated researchers [Winer

and Bloebaum, 2001] to come up with visual design steering (VDS). VDS was developed for

multi-criteria design optimization. VDS is said to be implemented at any point during the

design process. VDS uses approximate methods with reasonable level of accuracy required

by the designer to visualize the datasets even on personal computers. Both the VDS and the

computational steering approach acknowledge the importance of visualization. Visualization

provides the designer with the information on the current stage and behavior of the system.

This also enables the designer to understand the impact of their parameter changes. As a part

of VDS graph morphing is proposed. Graph morphing allows the designer to represent the n-

dimensional optimization problem in two or three dimensions. The most critical design

variables are placed in these axes and the remaining design variables are placed in graphical

“switches”.

 This research work is interested in developing human-guided interactive optimization

technique to expedite evolutionary optimization in complex engineering problems. In this

Section, a general overview of computational steering methods was presented which lead to

 53

the understanding of importance of visualization in interactive optimization. The rest of this

section is dedicated to study a selected list optimization methods based on evolutionary

algorithms and that are equipped with continuous designer interaction and/or visualization

capabilities to expedite optimization. The interactive physical programming (IPP) framework

was developed by [Tappeta et al., 2000] to overcome the limitations of the physical

programming methodology. IPP takes into account the designer preference during the

optimization process in addition to providing the designer with the Pareto-sensitivity

information, Pareto surface representation using response surfaces, trade-off analysis and

decision making capability, and a Pareto visualization tool for trade-off studies. The

interactive evolutionary multi-objective optimization (I-EMO) proposed by Deb and

Chaudhuri, [2005] involves a decision-maker in the evolutionary optimization process and

helps choose a single solution at the end. I-EMO first determines a non-dominated Pareto-

optimal front using an evolutionary optimization technique. The designer supplies the

limiting trade-off values to arrive at the partial Pareto-front. From the partial Pareto-front the

knee solutions are computed. The optimal solutions may sometimes be sensitive to local

perturbations. Even a small change in the decision variables will influence the overall

performance. The optimal solutions should be stable against small disturbances because in

practice a solution is difficult to implement exactly with an infinite precision. Thus, the

designer is often interested in robust solutions that are relatively insensitive to variable

perturbation. Huang [2006] developed a multi-threaded interactive evolutionary design

environment to achieve optimum coal pipe design. The optimization run proceeds in a model

thread, while the designer can make certain changes to the existing solutions in a view thread

 54

and visualize the results. The multi-threaded interactive evolutionary design environment

was used to expedite the engineering optimization.

2.9 Summary

This chapter presented the current trends in engineering design in the light of high

fidelity models and advanced computing technologies such as virtual engineering

environments. In addition, the Sections 2.1 - 2.5 pointed the research direction towards rapid

product development by expediting the engineering design process, in particular, the

engineering optimization process. Sections 2.6 and 2.7 presented the role of optimization

techniques in general and the unmatched supremacy of evolutionary optimization techniques

on engineering optimization. Thus the stage is set with the availability of a variety of

optimization tools, high fidelity models, and advanced engineering environments. One of the

major factors that slow down the evolutionary optimization is the longer time to compute

fitness values when the high fidelity analysis models are integrated with the optimization.

From the background research done so far, it is understood that interactive optimization

system is the solution to design problems involving complex systems. Section 2.8 was

dedicated to provide the details regarding unguided (or computer controlled) interactive

optimization and human guided interactive techniques. The material outlined in this Section

opens up Chapter 3 where further discussion on this subject matter is done and the need for

the progressive designer interaction is explained.

 55

CHAPTER 3. CURRENT TRENDS OF HUMAN INTERACTION IN
ENGINEERING DESIGN

This chapter focuses on the present days’ role of human interaction on engineering

design. The current interaction methods discussed briefly in Section 2.8.2 are revisited in this

chapter to present their similarities and the differences with respect to this research.

3.1 Human Interaction Systems in Engineering

Human-guided interaction schemes are often well-suited for engineering problems

involving complex systems. This understanding has resulted in the development of several

human interactive methods in engineering especially in the most critical areas of analysis,

simulation, and optimization. Anderson et al., [2000] pointed out the importance of

interaction on engineering optimization problems. The successful implementation of an

optimization algorithm is proportional to the designers’ understanding of the problem and the

level of design interaction with the problem parameters. More and more researchers agree

upon the importance of graphical visualization to facilitate the designers’ understanding of

the solution, state of the problem, and behavior of the design variables [Kraemer and Vetter,

1998]. The entire research area of computational steering was emerged based on the role of

visualization to make design changes to the parameters rather than letting the computational

algorithm complete the runs. The basic assumption of computational steering is that the

experienced designer/analyst can steer the engineering design process to solution more

rapidly. In contrast, if the solution strays to fruitless areas, the designer can either redirect the

solutions or start off with the new initial conditions. Computational steering research is based

on the paradigm that the simulation and visualization cannot be decoupled. Hence, the

 56

concept of computational steering is leaning more towards the online visualization, i.e., the

designer is enabled to interact with the solution by seeing the parameters during the analysis

or optimization runs. Also the computational steering research supports the use of full

datasets without any approximations to speed up the process or reduce complexity. A

selected list of research work based on computational steering include [Parker et al., 1995

and 1997; Beazley and Lomdahl 1996; Longacre et al., 1996].

SCIRun, a scientific programming environment for computational steering was

developed by [Parker et al., 1995]. SCIRun was originally intended to solve specific

problems in computational medicine, but its scope was extended to serve as a generic

problem solving environment in computational sciences and engineering with the emphasis

on steering large-scale scientific computations. This system allows the designer to enter

complex problems in the form of large equation sets. These equation sets are then sent to the

computational solver. At any time, the designer can change the design variable values and

implement them in the running analysis. Despite all the advantages of this system this system

may not suit an engineering optimization problem connected to the conceptual design stage,

where the designer may not be completely aware of the system. Hence, the mathematical

equations sets cannot be prepared upfront. Multi-function optimization and visualization

environment (MOVE) was developed by Longacre et al., [1996]. The solutions of the

optimization problem are represented in a visual two dimensional form. The design variables

are changed by the user using the graphical user interface. This tool also presents the

designer the sensitivity information as line graphs and Pareto information in a simple manner

to enable the designer understanding of the optimization problem. Despite the advantages the

MOVE tools become really complex when a large number of design variables are to be

 57

studied. There exists a variety of tools are built based on computational steering paradigm,

their differences are however very small and are mostly based on how they manage the large

datasets that are neither reduced nor approximated.

With the emphasis on the role of visualization in engineering the concept of visual

design steering (VDS) was proposed by [Winer and Bloebaum 2002] to cater to engineering

design problem, especially those involve multidisciplinary optimization. VDS controls the

computationally intensive design processes using visualization. To steer the design process to

solutions more efficiently the visualization can be implemented before, during, or after the

design process. This is the area where the VDS differ from the computational steering

philosophy computational steering philosophy emphasizes on visualization during the design

(or optimization) process. In addition, the computational steering methods require large data

transfers, sophisticated networking capabilities, and high-performance computers. The VDS

paradigm accepts reduced or approximated datasets to maintain the interaction in the real-

time or near-real-time. VDS can operate on a range of computer hardware from powerful

workstations to a personal computer. VDS addresses the issues related to multi-dimensional

datasets by graph morphing, i.e., representing the most critical design variables in two or

three axes and the remaining variables can be visualized by enabling graphical switches. The

major advantage of VDS scheme is that the design variables may be changed in the real-time.

In their work on method validation for the graph morphing the researchers have

demonstrated the usefulness of the variable, and analyzed the constraint limits and

redundancy. More details regarding the implementation of VDS, graph morphing and their

role in facilitating multidisciplinary optimization problems can be referred from [Winer and

Bloebaum, 2002 (a) and (b)]. Despite several advantages of this system over the

 58

computational steering methods, this scheme doesn’t give much emphasize on the most

common evolutionary optimization techniques and the use of high fidelity analysis models.

Many researchers have worked to perform engineering tasks from the virtual

environment by coupling engineering analysis and graphical visualization. SphereVR the

first VR environment for the design of spherical four bar mechanisms was developed by

Osborn and Vance [1995]. This system places the designer in the virtual environment to

virtually built and test prototypes to develop an optimum mechanism. The graphical

representation of the parts in the virtual world gave the designer the freedom to move along

all three axes to study the impact of the design changes. Boilermaker developed by Diachin

et al., [1996] is another earliest application that coupled engineering analysis with graphical

visualization. The computational model of an industrial furnace placed in a virtual

environment enabled the designer to study different furnace configurations and choose the

design variables to create an optimum design. Yeh and Vance [1997] used the sensitivity-

based structural design system that allows the designer to interact with the structural

elements and systems in an immersive virtual environment to perform optimization to obtain

the stress levels in the structures within the desired range. Ryken and Vance [2000]

facilitated engineering design process by integrating high fidelity analysis and simulation

FEA tool in a VE environment. Designers received feedback on the stress distribution in

response to their product geometry modification. Another example of coupling engineering

analysis and virtual environments is DN-Edit [Kihonge et al., 2002]. DN-Edit allows

NURBS-based (Non-Uniform Rational B-Splines) surface geometry to be altered

interactively. A variety of interaction were possible using virtual cursors that allowed

interaction with geometry surfaces, enabled surface points to be displaced, material to be

 59

added or removed. The resulting NURBS-based surface can be exported to various CAD or

analysis programs. The shaping of three-dimensional geometry in a virtual environment

bypasses the obstacles and limitations of a two-dimensional human computer interface. All

the methods discussed in this paragraph use datasets that are reduced or approximated.

3.2 Scope of this Work

From Section 3.1, it is evident that including designer in the loop expedites

optimization, and enhances designer understanding of the problem. Especially during the

conceptual design phase the problem formulation takes place as a part of optimization

process. Therefore, it is desirable and beneficial to optimize an inexact or ill-defined problem

using designer interaction. From the background research done so far, it is understood that

visualization enabled interactive optimization system is the solution to design problems

involving complex systems. The interactive exploration of the search space with “what-if”

analysis may help designer to more effectively generate promising solutions and to assess the

feasibility of the generated solutions for implementation. A variety of interactive

optimization systems equipped with the state-of-the-art graphical visualization are present

both as commercial and open source software. Some of the systems are implemented without

the capability of integrating the high-fidelity analysis models during run-time. Especially

when thermo-fluids systems are designed the role of optimization integrated with high

fidelity models are considered critical. While some immersive virtual reality based designer

interactive system use high fidelity models using reductions and approximations, however

they facilitate engineering optimization by trial-and-error, and not by evolution. Thus the

versatility of engineering optimization is to be considered before designing an interactive

 60

optimization scheme. In addition, in some current systems the designer interaction interrupts

the optimization or the optimization runs are done elsewhere and the pre-computed results

(offline) are visualized in the immersive virtual environment. Despite the availability of

power visualization in such systems, the designer choice of parameter values can’t be

changed in the runtime resulting in the designers’ not understanding the implicit design

constraints. These obvious gaps in the current human-guided interactive systems can be

addressed by the proper understanding of modes of human-guided interaction, current trends

in interactive optimization using high-fidelity models, and advanced engineering framework,

virtual engineering.

 The goal of this research is to study the impact of designer interaction on expediting

engineering optimization. Vladimir et al., [2002] summarized the deficiencies of the current

optimization software, they are, lack of user familiarity requiring immense training on the

optimization concepts, cost of optimization software, and large computational resources

required to perform general purpose optimization. In addition to addressing the observation

of Vladimir, this research is also driven to simplify the tasks of the designer while interacting

with the optimization system. Three simple modes of designer interaction are inspection,

modification, and user controlled re-optimization. Depending on the complexity of the

optimization, the time span of each interaction mode varies. For example, in a small

optimization problems, the designer can shift between the three modes of interaction quickly,

whereas, the same cannot be possible in large problems. Large scale interactive optimization

poses challenges regarding modifiable visualizations, user friendliness, and algorithmic

performance [Chimani et al., 2004]. The goal of this research work is to facilitate large scale

 61

interaction on complex engineering optimization problems using evolutionary optimization

techniques coupled with high-fidelity analysis models.

 Existing literature presents the potential of virtual engineering as a power tool for

enhanced productivity and rapid product realization by enabling the designer access a variety

of problem solving and decision making tools. This inspires a question, “Why virtual

engineering systems are not routinely used?” It is due to the implementation complexity of

virtual engineering system. The implementation of virtual engineering requires knowledge of

the application and visualization including knowledge on VR, user interfaces, data

communication, and their own application. In addition, end-users, e.g., design engineers are

not programming experts. Virtual engineering applications can be constructed from scratch,

but as with any construction task, applications can be constructed more easily and efficiently

by integrating an existing application; the existing application could be automated, or at least

a higher lever user interface to assist in the annotation of the application is provided. The

general virtual engineering environments that contain software tools should be able to

provide higher level functionality on aspects common to arbitrary virtual engineering

applications. The existing research on virtual engineering discussed above shows that the

construction of the virtual engineering application is an underdeveloped aspect; existing

systems can only support specific applications. In addition, existing systems are not tailored

to the specific requirements of an effective virtual engineering application. These

deficiencies led to the development of VE-Suite for a general purpose virtual engineering

environment that fills the gap in existing systems. Thus for this research the interaction

framework is provided by VE-Suite, evolutionary algorithms are used as the standard

optimization technique, CFD models are the high fidelity models that are coupled with the

 62

optimization tools. Since the proposed research work has the characteristics of visual design

steering proposed by [Winer and Bloebaum, 2001] and computational steering paradigm with

simplified designer interaction. Hence, the proposed interaction is termed as human-guided

progressive interaction technique. The feature that makes the proposed interaction scheme

common to both the paradigms is: continuous and intermittent designer interaction with the

optimization system even during the optimization runs. A key aspect of progressive

interaction is the ability to see the proposed design in an easily understandable and intuitive

way. Simply visualizing the parameters does not allow the designers to choose the best

design and guide the process forward. Rather designer need to see the see the current design

and understand its strengths and weaknesses. In this way the designer can ensure that

complexities are understood and that the full range of engineering solutions can be explored.

This can be achieved by using virtual engineering (VE).

This chapter presented the similarities and differences of the current work with

respective to the proposed research in general. More detailed documentation of the

contributions from this work is present in future chapters along with the test cases used to

demonstrate the progressive interaction scheme.

 63

CHAPTER 4. PROBLEM DESCRIPTION

In order to demonstrate the performance of the proof-of-the-concept progressive

designer interaction on engineering optimization three test cases were chosen. The first test

case is on image segmentation and optimization. A variety of datasets are used in engineering

decision making process. This test case considers the role of digital images as decision

making objects from geographically diverse locations. The better the image quality the faster

the engineering decision making from diverse locations. The quality of the images and the

data transfer issues are approached in terms of image segmentation optimization. The

designer interaction is supposed to expedite the image segmentation until the image segments

with appreciable quality is evolved. The second test case is the shape optimization of finned

heat exchanger. This project is of critical importance especially for electronic components

where high amount of heat needs to be removed from very small components. This case

study is picked to demonstrate the fact that complex systems need not be large systems. The

role of designer interaction to evolve the optimum fin profile is the prime focus of this case

study. The third test case focuses on demonstration of interactive optimization using

commercial high fidelity analysis models coupled with evolutionary optimization techniques.

Also, very few designers are keen to perform CFD analysis due to its complexity and larger

run times. The goal is to demonstrate the importance of the CFD analysis and the role of

interaction to optimize this complex thermo-fluid system. The details regarding all these

three test cases presented in sections 4.1 to 4.3.

 64

4.1 Interactive Image Segment Optimization – Problem Description

Decision making using image data is widely prevalent in medicine, geographical

information systems, and aerial surveying. Due to ease of representation, analysis, and

knowledge acquisition the digital images are more popular than other forms of datasets. The

advantages of digital images are obtained at the expense of their larger file sizes. For

example, the uncompressed file size of a 24 bits-per-pixel (bpp), true color, 1200 x 1000

pixel aerial survey image is approximately 3.6 megabytes. Maintenance of high volume of

such images in their original quality is not practically feasible. Data management issues arise

if the images are to be transferred to remote and low-bandwidth areas. For the last four

decades, the data storage and transfer issues have called for the development of many

specialized data and image compression algorithms. The performance of an image

compression algorithm depends on the type of the image. Thus it is important to understand

the different types of image.

An image can be classified as bi-level, gray scale, or true color depending on the

amount of chromatic information present in each pixel. Continuous-tone and discrete-tone

are the classifications of the image based on the color variation between adjacent pixels. In a

continuous-tone image, the color variations between adjacent pixels are so small that they are

hard to distinguish, e.g., aerial survey image and medical images. Fig. 4.1 shows a 24 bits-

per-pixel, true color aerial survey image. Discrete-tone images have sharp color variations

between adjacent pixels, for example, a checkerboard. The compression methods used for

continuous-tone images often do not handle the sharp edges of discrete-tone images well.

This is due to the difference in the feature redundancy in the images. Based on the allowable

 65

loss of information, chromatic information per pixel, and pixel color variation, suitable

compression algorithms need to be selected.

Fig. 4.1 Continuous-tone Aerial Survey Image

Over the last four decades, many researchers have proposed specific image

compression algorithms to suit a variety of image types. Thus the image compression

algorithms fall into two broad categories: lossless and lossy. A detailed description of a

variety of well-documented compression techniques are presented in [Salomon 2004]. Lossy

algorithms preserve essential image features and remove image data that is not detectible by

human eyes at a desired picture size [Salomon 2002]. These techniques produce high

 66

compression ratios that are desired for storing and transferring large images. Lossy

compression techniques are preferred if the quality degradation due to compression does not

impact decision making. Segmentation-based coding, transformation coding (TC), vector

quantization (VQ) and sub-band (SB) coding schemes are commonly used lossy compression

techniques [Shukla et al., 2002]. Most natural images can be segmented into regions of high

and low details. High detail regions are intrinsically less compressible than regions of low

detail. Variable-rate image coding scheme varies the number of bits-per-unit-area according

to the local detail. For variable rate image coding applications, segmentation based coding

methods generally provide high compression ratios when compared with other compression

methods.

 Image segmentation subdivides an image into its constituent regions or objects. The

level of the subdivision is dependent on the level of details sought by the designer and the

nature of the problem being solved. Image segmentation is an essential preprocessing step

that determines the eventual success or failure of image analysis, image understanding,

pattern recognition, and robotics vision [Mena and Malpica 2003]. Due to the wide

applicability of image segmentation, active research is under way to develop faster and

sophisticated segmentation algorithms. An early survey on color image segmentation was

presented by [Skarbeck and Koschan 1994]. A detailed review of most commonly used

segmentation algorithms are presented in [Karthikeyan et al., Submitted]. The basic concepts

and the implementation details of most segmentation algorithms are presented in [Gonzalez

and Woods 2002; Gonzalez et al. 2004]. The performance of the segmentation algorithm

depends primarily on the image feature distribution, and pixel color variation. A suitable

segmentation algorithm has to be selected from a variety of pixel, edge, region-based, or

 67

advanced segmentation algorithms. Region-based image segmentation algorithms are more-

appropriate to segment the image feature-by-feature. This type of segmentation expedites the

image analysis and decision making.

Despite the availability of a variety of image segmentation algorithms, a number of

image segmentation issues have not been adequately addressed. The open issue is that most

algorithms use non-optimal segments and the training datasets must be pre-specified. This

scenario has motivated our research with an initial assumption that representing an image

using optimal number of segments automatically addresses the file size, image quality, and

data transferability issues. But, generating optimum image segments is a non-trivial task with

the existence of multiple feasible solutions. An automatic, easy-to-implement low-impact

image segmentation algorithm is developed as a part of this research work. This algorithm

combines the segmenting strengths of weighted Voronoi tessellations with the optimizing

capabilities of the evolutionary algorithms. This segmentation algorithm has been used to

segment low-variance aerial survey images and a variety of regular photographic images.

4.1.1 Low impact image segmentation

In a low variance continuous-tone image the smallest image distortion can potentially

impact the quality. In order to avoid distortions, more image segments are required to

preserve the image quality. The larger the number of image segments the higher the

computation time. In this study we present a new methodology for developing segmentations

based on balanced weighted Voronoi tessellations. The segmentation scheme has the

potential to provide significant feature preservation capability that can be equally applied to

discrete and continuous tone images. In addition by identifying and grouping various features

 68

this process can facilitate engineering analyses. The low-impact image segmentation is

implemented by combining the strengths of weighted Voronoi tessellations with the

evolutionary algorithms.

Balanced-weighted Voronoi tessellations. Voronoi tessellations (or tiling) [Okabe et

al. 2000] is a division of a finite subset of the plane into convex polygonal tiles. The tiles are

generated by placing a set of tile centers (or generators) into the plane. A tile associated with

a given tile center p consists of all points in the plane closer to p than to any other tile center.

The boundary between two tiles that meet is always a segment of the perpendicular bisector

of the line segment joining the two tile centers. In ordinary Voronoi diagrams, the distances

to the point sets are not weighted. Hence, polygonal segments result as shown in Fig. 4.1 (a).

Images often contain objects with curved boundaries. For these applications, weighted

Voronoi tessellations are used to segment the image. A weighted Voronoi tessellation differs

from a standard Voronoi tessellation in that each tile center has a weight r associated with it.

The square root of color variance in the locality of the generator is considered the numerical

weight r. This weight is multiplied by the distance from a generator to a point in the plane

when deciding tile membership. A large weight makes distance to a generator more

expensive, shrinking the size of the tile. A small weight makes the distance to a generator

cheap, increasing the size of the associated tile. The boundaries between weighted Voronoi

tiles are no longer line segments. Examine the comparison of squared distances made for two

tile centers (x1, y1) with weight r1 and (x2, y2) with weight r2 for a point (u, v) whose tile

membership is to be decided:

{ r1
2 [(x1 - u)2 + (y1 - v)2] } < { r2

2 [(x2 - u)2 + (y2 - v)2] } (4.1)

 69

If r1 = r2, then all quadratic terms in the comparison cancel resulting in a straight line

segment. In contrast if r1 ≠ r2, then quadratic curve boundaries result as shown in Fig. 4.2 (b)

[Ashlock et al. 2006].

 (a) (b)

Fig. 4.2 (a) Standard Voronoi Tiling and (b) Weighted Vornoi Tessellations

Evolutionary optimization scheme. An evolutionary optimization technique is used

to optimize the image segments generated by weighted Voronoi tessellations. The image

pixel data is discrete, multiple good solutions exist this necessitates the use of an

evolutionary algorithm (EA). Weighted Voronoi tessellations are easily represented in an

evolutionary algorithm as well. Each solution contains the voronoi generators (or point set)

and their corresponding numerical weights. Fig. 4.3 shows a single solution in the EA

population that is represented using four image segments. The length of the solution is equal

to the number of image segments used to represent the image. Hence, we have the pixel

values (X, Y) of the Voronoi generator and their numerical weights.

 70

X1 Y1 Wt1 X2 Y2 Wt2 X3 Y3 Wt3 X4 Y4 Wt4

Fig. 4.3 Solution Representation for Evolutionary Optimization

In this study, both the location of the points and the weights are optimized to

minimize the color variance within tiles. The choice of EA parameters such as parent

selection, crossover, mutation, and replacement was made from experience and small

numerical experiments. The first parent was chosen at random and the co-parent was selected

using roulette selection. Random two-point crossover was used with probabilistic mutation

with a 50% chance of increasing the number of image segments and another 50% chance of

randomly selecting ‘n’ locations and increasing their numerical weights by 10. Designer

interaction helps identify the number of distinct image features in a complex, continuous-

tone, low-variance images, for example, aerial survey images. Hence, periodic designer

interaction with the segment optimization routine expedites segmentation, image

understanding, and decision making. The details regarding the implementation of progressive

interaction scheme for image segment optimization is presented in Chapter 6.

4.2 Shape Optimization of a Finned Dissipater – Problem Description

Finned dissipaters are commonly used in many engineering sectors, where high heat

fluxes must be transferred. This is of critical importance especially for electronic components

where high amount of heat needs to be removed from very small components. The

optimization of the fin shape is extremely important for the optimal performance of the

 71

system that generates heat. Shape optimization of a fin is encountered during the detailed

engineering design stage where the physical configuration of the fin plays a very significant

role on the flow parameters, such as temperature and flow velocity. The shape optimization is

broadly classified into direct and inverse optimization methods. Direct optimization problem

is concerned about minimizing an objective function subject to constraints on geometry or

flow conditions, as shown in Equation 2.1. The direct method becomes tedious and time-

consuming when a large number design profiles need to be analyzed. The inverse

optimization method considers an end results, say for instance, pressure or velocity

distributions and determines the shape or geometry that gave rise to such pressure or velocity

distribution. Both the methods have unique advantages and disadvantages. The two distinct

demerits of the inverse problems are: 1. the distribution imposed on the formulation may not

be physically realizable, so a solution may be impossible and 2. even if the distribution

imposed is physically realizable, it may not be an optimal distribution [Fan and Zhu, 1998].

4.2.1 Evolutionary algorithms for fin shape optimization

The direct optimization problems are becoming more promising option due to the

advancement in computer hardware. In this research, direct shape optimization using

evolutionary optimization technique is considered. Evolutionary optimization techniques are

preferred when the thorough exploration of search space is desired. Fabbri [1997 and 1998]

has used an evolutionary algorithm to simultaneously optimize the geometry, base thickness

and spacing of heat exchanger fins while maintaining an upper limit on the volume of the fin.

The governing equations were solved using the finite element method. Chin-Hsien et al.,

[2001] solved the inverse shape design problem using the conjugate gradient method. A

 72

methodology was developed to design the shape of solid medium based on its energy loss to

the surrounding stationary fluid. Suram et al., [2006] explored the applicability of graph

based evolutionary algorithms on the shape optimization of the finned dissipater.

In each case, the exploratory capabilities of the evolutionary techniques generate a set

of feasible design solutions. However, this advantage was obtained at the expense of longer

optimization time. The time to locate an acceptable solution can range from a few days to a

few weeks for complex shape optimization. A significant portion of this time is spent on

fitness evaluation. The computational solver estimates the initial fitness values of all the

solutions in the evolving population and the fitness values at the end of every mating event. A

significant time reduction can be achieved if the calls for the fitness value evaluation are

done only when there is a progress towards the optimum solution. This scenario necessitates

the designer in-the-loop to direct the search into more fruitful regions of the solution space

based on his/her knowledge thereby reducing calls for fitness evaluation. Hence with an

objective to expedite the complex shape optimization, this problem has been chosen as the

test case for the research.

4.2.2 Description of fin setup

Figure 4.4 shows a set of fins. Fluid (water) is pumped through the channel between

the curved surfaces of two consecutive fins i.e. along the positive z-axis. The vertical surface

of the fin is insulated. The fluid velocity and the temperature profiles are assumed to be fully

developed. The flow is also assumed to be laminar and incompressible and effects (if any)

due to natural convection are neglected. The whole system is assumed to be in steady-state.

The thermal properties of the solid and fluid are assumed constant. Fin profiles are to be

 73

designed with a consideration that high concavity or convexity may result in manufacturing

issues. Taking advantage of the symmetry, only one half of the fin is modeled which is

shown in Fig. 4.5. In this Fig. the distance from the base of the fin to the insulated flat plate is

assumed to be of unit length. The length of the fin is denoted by a, the base thickness by t

and the spacing between two consecutive fins by 2b. In Fig. 4.5 due to the symmetry we have

the spacing as b.

Fig. 4.4 Schematic Diagram of the Fins

 74

Fig. 4.5 Modeled Fin

4.2.3 Governing equations

The flow of the fluid (water) is given by

2 2

2 2

1u u p
x y zμ
∂ ∂ ∂

+ =
∂ ∂ ∂

 (4.1)

The pressure drop along the z-axis is assumed to be constant. It should be noted that the

pressure drop is negative in the direction of flow. For boundary conditions, the velocity of

the fluid is zero at all of its interfaces with the fin and the insulated plate. The boundary

condition u 0
y
∂

=
∂

applies on the symmetry boundaries. The temperature distribution in the fin

and the fluid are given by Equations (4.2) and (4.3) respectively.

2 2

2 2 0s sT T
x y

∂ ∂
+ =

∂ ∂
 (4.2)

 75

2 2

2 2
f f f pf

f

T T c T
u f

x y k
ρ

z
∂ ∂ ∂

+ =
∂ ∂ ∂

 (4.3)

The temperature of the fluid and the solid are assumed to be thermally fully developed. Due

to this assumption any plane parallel to the x-y plane, the same temperature profiles would be

obtained. The fluid temperature variation along the z axis is assumed to be constant. The

boundary conditions at the non-symmetry plane for the energy equation of the solid and the

fluid are given in Equations (4.4 and 4.5) respectively.

0

s
s

x

Tk q
x =

∂
− =

∂
 (4.4)

1

0f
f

x

T
k

x
=

∂
=

∂
 (4.5)

At the interface of the solid and the fluid the heat flux and temperatures have to be

equated to conserve energy as presented in Equation (4.6).

f s

f s

f s

T Tk k
n n
T T

∂ ∂
=

∂ ∂
=

r r
 (4.6)

In Equation (4.6), the term is the direction normal to the surface being considered. n
r

Representation of fin profiles. The fin profiles are represented by a polynomial

equation as given in Equation (4.7).

∑
+=

=

=
1

0

ni

i

i
i xcy

 (4.7)

 76

In Equation (4.7), the term ‘n’ indicates the degree of the fin profile. The x values are defined

by splitting the length of the fin into ‘n+1’ equal points. The terms ‘ci’ indicate the

polynomial coefficients. Based on the degree of the fin profile the designer supplies yi

values. Using the yi and xi values the polynomial coefficients are determined.

Fitness evaluation. The fitness of the fin profiles are computed in terms of a non-

dimensional number. In order to compute the fitness the temperature at each grid point in the

fluid and the solid should be available. These temperature values are divided by the max

temperature (Tmax). Irrespective of the fin profile degree and the cooling fluid parameters the

Tmax corresponds to the lower left corner in the Fig. 4.5. This is because of the same boundary

conditions on the left and the lower surfaces of the fin for all the CFD cases. This non-

dimensionalizes the temperature distribution. Hence, Nusselt number can be computed using

Equation (4.8) as a dimensionless number that is equivalent to the temperature gradient at a

surface. The higher Nusselt number is an indication of the enhancement of heat transfer from

a surface due to a surrounding fluid, when compared to the case of pure conduction. Thus,

the higher the Nusselt number more is the energy transfer and so better is the shape of the fin.

 sTNu
n

∂
=
∂
r (4.8)

Thus, the optimization problem is one of maximizing the Nusselt number at the lateral

surface of the fin.

Interactive shape optimization of finned dissipater. Human-guided shape

optimization task is performed to obtain an optimum fin profile. The optimum fin profile is

essential to achieve maximum heat transfer through the finned dissipater. The designer’s

intelligence was used to develop interactive initial solutions. These “smart” initial solutions

 77

potentially reduce the number of fruitless fitness evaluation calls. In addition, these smart

solutions “lead” the other solutions in the population in their search for optimum solution. In

this proof-of-concept study, we are interested in understanding how the designer created

interactive solutions lead the evolutionary algorithm towards the optima when compared to

random population.

4.3 Interactive Analysis and Optimization of Mixing Nozzle – Problem
Description

Hydraulic mixing nozzles are used to mix the chemical and carrier solutions and store

the mixture in a tank. Hydraulic mixing nozzles require pump to provide the fluid flow

necessary for the nozzle operation. The prime advantages of the hydraulic mixing nozzles

are: high reliability and low maintenance due to the absence of moving parts, low installation

cost due to the elimination of propeller and its accessories like shaft, bearings, and drive unit,

and easy to clean the storage tank as the propeller and other hindering parts are not used.

However, the designer should be aware of certain critical issues before selecting an hydraulic

mixing nozzle. Firstly, the mixing efficiency of these nozzles is less when compared to that

of mechanical agitators. Secondly, the optimum design and placement of these nozzles are

extremely critical to achieve uniform tank mixture in a required time. The designer has two

choices to achieve uniform tank mixing, either to use a set of smaller number of nozzles or to

develop the optimum nozzle design. The focus of this research is to provide the engineering

solution by developing optimum nozzle design.

Fig. 4.6 shows the CAD model of a common hydraulic mixing nozzle that uses a

high-speed fluid. The fluid pumped out is send to the nozzle jet, the right side portion of Fig.

 78

4.6. After passing through this region the fluid enters into the open portion called the

entrainment portion. The jet is connected to the horn through four supports, as shown in Fig.

4.6. The supports should be thin to avoid overly interrupting the liquid flow around the jet,

but must be strong to sustain reasonable loads applied on the horn during cleaning and

maintenance. The fluid leaving the entrainment portion passes through the horn that directs

the fluid. In the entrainment portion venturri is created and this causes the total flow exiting

the nozzle to be several times greater than the input fluid volume supplied. Fig. 4.7 shows the

cross sectional view of the nozzle that describes the nozzle region, entrainment region and

inlet region more clearly. The flow from the nozzle exit divided by the inlet flow into the jet

is referred as the magnification ratio. In this research the focus is to achieve optimum nozzle

geometry to achieve the maximum magnification ratio.

Fig. 4.6 CAD Model of a Hydraulic Mixing Nozzle

 79

Fig. 4.7 Simple Cross-sectional View of Hydraulic Nozzle

Despite the availability of several off-the-shelf nozzles of this type that are optimized

to operate near a specific flow rate and pressure conditions, the goal of this work is to

develop the optimum nozzle to better suit the needs of this problem. The operating conditions

include the jet diameter of 5/16” and the jet exit speed of approximately 60 ft/s. The

magnification ratio of the nozzle design depends on the nozzle length (horn area),

entrainment length (open area), and the horn profiles. Thus the design variables of interest

are nozzle length, entrainment length and the number of horn points and its location. This is

an interesting flow problem involves fluid mixing. The optimum nozzle is obtained when the

evolutionary optimization technique is integrated with a CFD solver. More details regarding

this problem can be referred from Engelbrecht et al., [To be Submitted]; Xiao et al., [2005].

The goal of this research work is to study the impact of progressive designer interaction on

expediting the nozzle optimization. CFD solver coupled with an optimization algorithm

running for a few weeks is not uncommon. In this research, the positive steps are taken to

 80

expedite the nozzle optimization by reducing the fruitless calls to the solver i.e., the designer

intelligence are used to clear the low performing solutions.

4.3.1 Evolutionary algorithms for optimum nozzles

Engelbrecht et al., [To be submitted] studied the use of graph based evolutionary

algorithms coupled with CFD to seek an optimum nozzle design. In their study, four different

combinatorial graphs each with varying levels of graph connectivity were used to explore

optimum designs of the nozzle. This work is built upon the work of Engelbrecht et al. Simple

evolutionary algorithms are used in place of graph based evolutionary algorithms, because

the EAs are the part of the progressive interaction system developed in this work. EA

coupled with the Star-CD is used in this research to achieve nozzle optimization. Multiple

possible solutions exist and wide search space exploration is desired, hence the evolutionary

optimization techniques are preferred. Within the regional constraints presented by the

designer on nozzle length, entrainment length and the horn point location, a population of

nozzles can be represented using evolutionary algorithms. Each nozzle describes a specific

location in the search space thereby the population diversity is preserved. Thus a large

number of nozzle designs can be evaluated during the conceptual design phase, which is a

requirement. From the pool of good nozzle, the best performing nozzle can be chosen.

4.3.2 Description of nozzle setup

The nozzle used in this work was injection molded from a non-corrosive

polypropylene plastic. The orifice diameter of the nozzle is (5/16”), the entrainment length is

(0.7”), and the nozzle horn length is 3.9”. For optimization purposes, the nozzles with the

horn lengths regions ranging from 3 to 8 inches were investigated. The number of horn points

 81

that describe the nozzle profile was taken to be 50. The acceptable range of entrainment (or

open area) length was 0.2 to 4.0 inches. A simple two dimensional model was used for the

CFD analysis. The Z axis is along the breadth of this paper, the X axis is along the length of

this paper. The nozzle model shown in Fig. 4.7 is along the X-Z plane. Due to the symmetry

only one half of the model shown in Fig. 4.7 is used for CFD analysis. The horn points in the

X axes were in the range of 0.5 to 1.5 inches and that in the Z axes were allowed to be

between 0 to 18 inches. The rightmost of Fig. 4.7 is the origin. The inlet length (jet region)

was maintained to be constant (5”), and the inlet diameter was 0.5”. The magnification ratio

of the nozzle is defined by equation (4.9).

jet

out

f
f

Mag =
 (4.9)

 82

CHAPTER 5. PROGRESSIVE DESIGNER INTERACTION

The goal of this research is to develop and implement evolutionary optimization

techniques coupled with high-fidelity models in an interactive environment. All the activities

(interaction, visualization and computation) are controlled by the designer-in-the-loop.

Progressive interaction ensures thorough exploration of the search space and hence, the

quality of the optimum solutions. A flexible software framework is needed to implement the

progressive interaction scheme. This chapter presents the implementation details human-

guided, progressive designer interaction scheme using VE-Suite. The list of the attributes of

progressive interaction system is presented in Section 5.5.

5.1 VE-Suite

VE-Suite (www.vesuite.org) is an open source virtual engineering software package

that is currently under active development by the Virtual Engineering Research Group at

Iowa State University. VE-Suite is designed as a high-level support tool for engineers who

want to transform their traditional applications into virtual engineering-based applications.

Essentially, VE-Suite enables users to easily incorporate component models and

corresponding two-dimensional and three-dimensional graphical representations to create

new, plug-and-play framework components. The goal is to enable engineers to carry out

geometric modeling, performance analysis, and numerical analysis en route to engineering

design within a virtual environment. In addition, virtual engineering technology serves as a

means of gaining insight into the design space. The modular development of VE-Suite makes

it more flexible to handle most engineering decision making problems that involve creating

and analysis of high fidelity models, optimization, and decision making. Every time a new

 83

project is introduced to this framework they are done as a “plug-and-play” addition, without

any modification to this framework. This chapter provides the details on how VE-Suite is

used to create a progressive interaction environment for optimization.

5.2 VE-Suite Structure

The framework of VE-Suite is shown in Figure 5.1. The core modules of VE-Suite

are VE-Xplorer (the graphical engine which is used to view comprehensive two-dimensional

or three-dimensional graphic results), VE Conductor (the GUI front end to the virtual

engineering framework which provides easy user interaction), and VE-CE (the computational

engine). VE-Suite is general in nature and the three key components can run separately on a

geographically diverse set of heterogeneous computer platforms. This separation is

convenient because the VE-CE can run on the same machine as the application

(computational unit), and VE-Conductor, which presents a graphical user interface to the

user, can execute remotely on a separate machine. For example, the VE-CE component can

run on a Linux cluster; the VE-Xplorer component can run on an SGI rendering machine;

and VE-Conductor can run on a portable Tablet PC. Therefore, the framework components

can be distributed across computational resources to make the most efficient use of these

resources. This architecture is also advantageous because VE-CE must exist through the

application’s lifetime while VE-Conductor does not share this requirement. VE-Conductor is

transitory and can connect to the server many times throughout the server’s (application’s)

existence. Since the client may use visualizations for data interpretation, the end-user may

choose to run the client on a high-performance graphics system. Also, the three core

 84

components of VE-Suite can function as complete stand-alone applications provided the

necessary input files are prepared by the user.

The communication between the different components and user-defined modules is

built upon the widely adapted and stable Common Object Request Broker Architecture

(CORBA) standard developed by the Object Management Group over the last decade. The

Executive module (one of the key modules in VE-CE) implements two of the standard

CORBA services bundled with The Ace ORB (TAO) CORBA

[http://www.ece.uci.edu./~schmidt/TAO.html] distribution. The first service is the COSS

Naming Service that is used as a lookup table of currently running processes which allows

clients to find running process based on a given ID. The second service is the interface that

houses the functional and data type definitions and provides them graphically to the user to

allow him or her to define a workflow in the graphical interface. An Interface Definition

Language (IDL) between VE-CE and other components was designed to generate general

data types in order to meet the requirements of different applications.

In VE-Suite framework, the running process (usually the computational unit) can

broadcast its status and analyze information from multiple GUI clients. Any given GUI can

connect to the system information stream at any point in time and view the current state of

the running process. The framework is designed to allow the GUI to be shutdown and

restarted at will without any impact on the computational unit’s execution. This attach/detach

functionality gives the user the ability to easily monitor the computational process. As an

example, this functionality allows a user to build and start a simulation and then detach from

the computational engine. The user could then go to a different location, re-attach to the

running process, and regain monitoring and control functions. The other advantage of the use

 85

of component architecture design techniques is that multiple GUIs can also be connected

simultaneously from different computers and allow multiple users to monitor a simulation

from different locations. To enable portability on multiple operating systems and immersive

technology platforms, VE-Xplorer is built upon VR Juggler [www.vrjuggler.org], Open

Scene Graph [www.openscenegraph.com], and Kitware’s Visualization Toolkit (VTK)

[www.vtk.org].

Fig 5.1 Architecture of VE-Suite

5.3 VE-Suite API

When building a virtual engineering-based application, the implementation can be

broken-down into three groups: VE-Conductor for user interface, VE-CE for computations,

 86

and VE-Xplorer for the visualization of results. As shown in Fig. 5.1, these groups form the

building blocks of the VE-Suite API.

5.3.1 VE-Conductor

The GUI is where the user is able to create the system configuration, set model

inputs, start and stop execution of the simulation, and view simulation results based on the

system configuration they designed in the first step. Developers can create their own GUIs

and then compile the resulting code into a Dynamic Link Library (DLL) in Windows or a

shared library in Linux/Unix. Thus, it is more likely to meet user specific requirements

because the interface is built by the person who will use it. This user interface will be

custom-tailored to the user’s needs and can easily be modified if the user’s focus of interest

changes. VE-Suite is able to dynamically discover, identify, and load the user’s GUI from

these shared libraries. VE-Suite provides a simple API built on top of wxWidgets for the user

to build his own interface to fit the requirement of the actual application. WxWidgets was

chosen as the UI library because it is one of the most functional, stable cross-platform UI

libraries.

5.3.2 VE-CE

As mentioned before, VE-CE is used to construct, coordinate, schedule, and monitor

the running processes. VE-CE provides a CORBA server with which the detachable GUI and

computational unit connect. It is capable of running simulations containing a multitude of

different types of models, each accepting and generating a myriad of data types. Since users

from different fields have a wide variety of needs, the analysis tools and their use require a

detailed understanding of the problem. Therefore, it is the user’s responsible to develop their

 87

application objects (computation unit). VE-Suite uses the concept of the computational unit

to allow flexibility of the system. This decreases coupling between the GUI and computation

unit. Changes to GUI or unit will not affect the other unless the change involves a change of

the system configuration. Once a client-server connection is made, the GUI is able to send

parameters and commands to the unit.

5.3.3 VE-Xplorer

A key aim of virtual engineering is to fully engage the human capacity for problem

solving by creating a realistic experience for the user so that he or she can focus entirely on

the engineering problem. The advantage is that previously indescribable complexities can be

understood and the full range of engineering solutions can be explored. The graphical engine

(VE-Xplorer) provides the core visualization functionality for the virtual engineering aspect

of the framework. It can load geometry files, three-dimensional simulation data and

experimental data of almost every format into a scene. VR Juggler is used to handle

interfacing with VR hardware and graphics rendering platforms. VE-Suite handles the

creation of the virtual environment and VR Juggler allows software to run with any type of

virtual environment, from a regular 2-D screen to a six-walled immersive virtual space. Due

to the generality of the visualization requirements, the VE-Suite core provides a complete

visualization GUI so that users can navigate and control the scene. Thus, although most users

of VE-Suite are not necessarily expert software developers, they need not worry about the

complexities of details of graphics and virtual reality programming and can instead spend

time on their applications. More details regarding the implementation of VE-Suite can be

found in [Huang, 2006].

 88

5.4 Requirements of Interactive Environment

The three most common modes of progressive interaction are inspection,

modification, and designer-controlled re-optimization. Inspection is an interactive mode that

requires some output from the interactive environment. This is the mode through which the

interactive system communicates to the designer. Research study indicates that nearly one-

half of the brains neurons are active for visual information [Lotov et al., 2004]. Hence, the

most common and powerful mode of inspection is graphical visualization. Modification is

the mode through which the designer communicates their preferences to the interactive

system. This is typically done by graphical user interface (GUI). The ability to control the

inspection and re-optimization rests upon modification. Designer controlled re-optimization

does not directly communicate with the designer. Rather the results obtained from this

process are converted to the suitable form that is readily understandable by the designer. All

the three modes of progressive interaction can be harmonized if the appropriate division of

labor between the designer and computers are achieved. The humans’ superior abstract

thinking and the computers’ superior computational speed can work together to produce a

synergistic effect. Having described the functionality of each interaction mode, and the

expectations from the interactive environment, the next step is to consider the basic

requirements of the interactive environment. Any interactive environment should meet the

following requirements:

1) Simplicity: The Application Programming Interfaces (APIs) and/or languages used to

create applications should be designed simply so that the designer can understand without

much delay. This means users from different fields should be able to easily build applications

 89

inside the system or add new capabilities without dealing with system programming issues.

The implementation should hide as much of the system’s underlying complexity as possible.

2) Extensibility: The system should be easy to extend the existing capabilities. This

requirement is highly desired as the design changes, project changes may result in change of

product configuration completely. The current code should be capable of accepting the

changes without major alterations.

3) Flexibility: The system should enable users to choose from a variety of engineering tools

in a platform independent manner.

One of the major requirements of a progressive interaction design environment is to

provide users with sufficient data and other information about the designed product and its

performance in an intuitive manner. VE-Suite provides such functionalities, such as a

detachable GUI, realistic graphical engine and bi-directional bindings between the GUI and

the computational unit. This work focuses on developing specific applications built upon the

interactive evolutionary design environment. For instance, the basic framework of VE-Suite

and data handling structure of interactive evolutionary design environment remains the same.

Specific implementation done on GUI, VE-CE, and graphical engine to suit progressive

interaction is presented in this chapter and specific implementation are presented with

individual case study description.

5.5 Implementation of Progressive Interaction

Progressive interaction is defined as a human-guided preference articulation method

where the designers’ interaction continuously controls the engineering optimization by

visualization, modification and controlled re-optimization. In progressive interaction designer

 90

preference articulation is done continuously during the optimization process. To achieve real-

time or near real-time response the communication between the user interface, computational

unit, and visual graphical module.

Preferences

Computation
Visualization

Fig. 5.2 Progressive Interaction Using VE-Suite

This section focuses on describing how the progressive interaction for engineering

optimization is built within the VE-Suite software framework. The modular configuration of

VE-Suite extends well to accommodate the basic modules of the progressive interaction

system, as shown in Fig. 5.2. The three basic modules that need to be integrated to implement

progressive interaction are a preference articulation module, a computational module, and a

visualization module. All three modules are controlled by the designer. Human interaction

with visual feedback on the state of the problem helps designers change parameters during

interaction.

 91

5.5.1 Parameters for interactive optimization

VE-Conductor is the user interface used in the VE-Suite framework with standard

features to control the graphical engine. The low-level (or optimization method specific)

parameters and high-level (or problem specific) parameters are to be incorporated into the

user interface through the graphical user interface (GUI) plugin. The parameters whose

values need to be transferred to the computational unit have to be registered. The code

fragment that accomplishes this task for the finned dissipater problem is shown in Fig. 5.3.

HeatExchanger::HeatExchanger()
{

name = "HeatExchanger";
 RegistVar("mutationrate", &mutationrate);
 RegistVar("crossoverrate", &crossoverrate);
 RegistVar("popsize", &popsize);
 RegistVar("replacemethod", &replacemethod);
 RegistVar("crossovermethod", &crossovermethod);
 RegistVar("mutationmethod", &mutationmethod);
 RegistVar("checkinggene", &checkinggene);
 RegistVar("terminationmethod", &terminationmethod);
 RegistVar("designparamnames", &designparamnames);
 RegistVar("designparams", &designparams);
 RegistVar("upperlimits", &upperlimits);
 RegistVar("lowerlimits", &lowerlimits);
 RegistVar("activeindexs", &activeindexs);
 RegistVar("inactiveindexs", &inactiveindexs);
 RegistVar("checkingcreature", &checkingcreature);
 RegistVar("totalruns", &totalruns);
 RegistVar("totalmatingevents", &totalmatingevents);
 RegistVar("degree", °ree);
 RegistVar("interactiontype", &interactiontype);
}

Fig. 5.3 Registering Parameters for GUI - Computational Unit Communication

High Level Parameters. These are problem specific parameters. Engineering

optimization has objective function with a vector of decision variables, inequality and

equality constraints. The constraints that are listed are explicit constraints, while the implicit

constraints are to be discovered by the designer during the process of optimization. For an

 92

interactive optimization process, the designer should be able to alter the numerical bounds of

the decision variables and to add and remove constraints “on-the-fly”. In this research work,

the high level parameters of the problem are loaded to the GUI through a DesignSetup file.

The numerical constraints for these high level parameters are also changed in the real time.

For instance, in the image segmentation and optimization problem, the designer supplies the

interactive system a digital image. Based on the size of the image file the numerical

constraints of the design variables automatically changes. The DesignSetup and constraint

file information for the image segmentation and optimization problem is presented in Fig. 5.4

for an aerial survey image whose size is 1188x844 pixels

X_GEN 0 1188

Y_GEN 0 844

WEIGHTS 0.0 100.0

Fig. 5.4 Design Setup and Constraints File Information

The DesignSetup file is generated in the run time based on user’s interest. For

example, in the shape optimization of finned dissipater, the designer can choose the degree of

the fin profile. Based on the degree value, the number of parameters required for the

optimization changes. After inputting the required parameter values in the High-level

parameters dialog, as shown in Fig. 5.5 the “Load Design Parameters from File” is chosen to

dynamically vary the number of design parameters based on the fin degree. This change is

 93

dynamically updated in the DesignSetup file. The code fragment that accomplishes the

dynamic updating of DesignSetup file is shown in Fig. 5.6.

Fig. 5.5 High-level Parameter Setup Dialog

std::ofstream designsetup;
 designsetup.open("DesignSetup.txt", std::ios::out);
 designsetup<<"BASE_THICKNESS"<<std::endl;
 designsetup<<"FIN_SPACING"<<std::endl;
 for(int i=0; i<(degree+1); ++i)
 {
 designsetup<<"Y_"<<i<<std::endl;
 }
 designsetup.close();

Fig. 5.6 Design Setup File Generator

 94

Low level parameters. These are the solution method-specific parameters. These

parameters are subjected to the designer interaction to expedite the optimization process.

Typical low level parameters include population size, total mating events, total number of

evolutionary runs, gene length of the solution, choice of parent and co-parent selection,

crossover, mutation and replacement operators, as shown in Fig. 5.7.

Fig. 5.7 Low-level Parameter Setup Dialog

In all the projects done as a part of this research work, the results of the computation from the

computational unit are available to the designer either as numerical data or visual outputs in

the graphical plugin.

Advanced human-guided interaction. This is achieved when the designer

intelligence is used to develop the complete gene sequence for a few solutions in a

population. For instance, in the shape optimization problem, a 32 member EA population was

used for each fin degree (0 through 4). OpenGL based interactive design canvas was

developed as a part of progressive interaction research is shown in Fig. 5.8. This design

 95

canvas generates the visual output of the fin profile developed based on the designer values.

The user has the flexibility to select the most appropriate fin profile values very intuitively.

These fin profiles generated based on the user input can be used as special members in the

evolving population to direct the EA search.

Fig. 5.8 Interactive Fin Profile Setup Design Canvas

Say in a 32 solution population, a maximum of 5 solutions in the population were generated

by the designer. And these solutions were intended to guide the optimization process as elite

members. As the population evolves, the designer can pick and mutate a solution to extend

the exploratory capability of the solution. This advanced human-guided interaction is done

 96

without disturbing the optimization process. Also during the optimization run, the designer

has the flexibility to completely replace few solutions from the population with the designer

supplied solutions. This is done without disturbing the EA run. Generally, the solutions

replaced are typically the less productive ones. This not only expedites the EA process, but

also, accomplishes the intuitive exploration of the solution space with “what-if” analysis.

5.5.2 Computational engine

Low and high-level parameters including the choice of optimization technique, and

interaction type are to be submitted to the VE-CE from the VE-Conductor. To start the

computational engine the parameter values supplied by the user are required. The

computational engine ties-up with the solvers, optimization routines, etc. The results of the

optimization are continuously monitored by the designer. If the designer doesn’t find any

improvement in the fitness function, then the designer understands that the algorithm is stuck

in a local optimum. This problem can be sorted out by “injecting” new members in the EA

population. Through the user interface a new set of parameters are supplied to the

computational engine. After the optimization is done, the feasibility of the solution needs to

be ensured this is done by visualization.

5.5.3 Interactive visual analysis

The results of the designer interaction are sent back to the designer in the form of

numerical outputs. The designer interaction as mentioned above should result in the increase

of fitness. The fitness progress report displays the current fitness value of the best solution,

and the average fitness values. This will help designer evaluate the influence of their

interaction on the optimization. The graphical engine of the VE-Suite displays the results of

 97

the optimization as supplied by the computational unit. The contents of the graphical engine

are also controlled by the GUI. For instance, in the fin shape optimization problem, the

computational unit optimizes the fin profile and the visualization toolkit (VTK) files are

generated for the optimized profile. The designer can chose any VTK file that was output in

the intermediate stages of the evolution and load it in the graphical engine. The output from

the graphical engine for an intermediate VTK file is shown in Fig. 5.9.

Fig. 5.9 Visual Output of Velocity Distribution in a Third Degree Fin Profile

 98

If the designer finds the intermediate profiles more interesting, then the EA runs can

be controlled by injecting more suitable profiles into the population or terminating the runs.

Also, in the graphical engine, the resulting optimum fin profile can be visualized with the

temperature and velocity distribution. If the designer understands the optimized profile is

infeasible for implementation then a set of problem-specific parameters are altered and

optimized again, this completes the loop of human-guided visual analysis.

5.6 Contribution of this Work to VE-Suite

The work presented in this chapter is added to the VE-Suite framework as external

plugins. This is applicable to all the three test cases studied as a part of this research work.

Certain unique contributions made as a part of this work which can be integrated in the core

VE-Suite code in future is presented in this section.

5.6.1 Inputs to VE-Conductor

The interactive design canvas class was developed using the wxWidgets and OpenGL

software. This interactive design canvas is integrated with the designer preference module.

This canvas can operate as a start-up to the optimization process, during the optimization

process and after the optimization runs. Firstly, as a start-up this canvas is used to prepare the

designer choice of solutions for the evolutionary optimization. The real-time visual display of

the designers’ preference enables the designer to decide whether to proceed with that

particular solution or not. Secondly, during the evolutionary optimization runs are in

progress, the designer studies the progress of the EAs from fitness output files. If the

designer senses the stagnation of the EA, then the interactive design canvas is used to

generate a set of solutions and insert those in the population.

 99

As a part of this work, image segmentation and optimization is introduced as a plugin

to VE-Suite. Once compiled, this plugin can handle any digital image, based on the image

size the constraints required for image segmentation and optimization get reassigned. Based

on whatever image the designer is desired to segment, the interactive canvas class can load

the image in the design canvas and accept the user input of Voronoi generators and their

corresponding weights. The designer can opt to choose whether to insert solutions during the

runtime or not. In the shape optimization of the finned dissipater test case the designer can

use the same designer preference module for any degree. Based on the degree the design

variables can change on-the-fly and their associated constraints do also change. In the

hydraulic mixing nozzle problem, the designer can pre-specify the number of horn points and

generate nozzle profiles, and these profiles are supplied to the computation unit at the

runtime. In addition to the nozzle profiles, a whole range of solver parameters, flow

parameters, mesh parameters are all supplied from the designer preference module. All the

contributions done for this research work are developed in modular basis and can readily be

integrated with the VE-Suite directly or as a dynamic linking library (DLL).

5.6.2 Inputs to VE-CE

The computational units received designer preferences initially. During the

optimization runs, the computational units are controlled directly by the designer who gives

the information on the parent selection for the evolutionary mating events. Designer also can

insert a new member in the population during evolutionary run and replace the least

performing member without disturbing the optimization runs. After every ten mating events,

visual image output is generated for both image segmentation and shape optimization test

 100

cases. Due to the complexity and high time consumption, the image outputs for the best

nozzle are done once after an evolutionary run is completed. As an enhancement to this

work, multiple computational units, say for instance computational unit that handles CFD

and CAD portions of the nozzle can be seamlessly tied. For example, the CAD and CFD

modules, where the CAD portion focuses on accepting the user information on the horn

points and builds the three dimensional model of the part. While, the CFD nozzle can be set

to conduct optimization runs and the best nozzle profiles information is resubmitted to the

CAD. This enhancement demonstrates the capability of progressive designer interaction

system to handle multiple engineering tools in a virtual engineering environment to facilitate

engineering design.

 101

CHAPTER 6. IMPLEMENTATION FOR IMAGE SEGMENTATION
AND OPTIMIZATION

Low-impact segmentation represents almost invariant image segments using a single

color so that the quality degradation is minimal. The larger the number of segments, the more

closely the segmented image replicates the original image, but the higher the computation

time. Representing the image with an optimal number of segments minimizes the file size

while maintaining acceptable perceptual image quality. But determining the optimal number

of image segments is a non-trivial task. This results in an interesting optimization problem

with the existence of multiple feasible solutions. This necessitates the development of

human-guided, interactive image segment generation and optimization tool. Designer

interaction helps in generating optimal image segments with an acceptable image quality to

make engineering decisions. The designer is directly involved in identifying the interesting

areas of the image. For example, the designer may choose to have more segments in

information rich areas and vice versa. The selection of interesting areas of the image directs

the optimization to fruitful areas of the search space. This section presents the

implementation details of human-guided, progressive designer interaction tool for image

segmentation and optimization.

6.1 Designer Interface Module

This module is used by the designer to input their preferences, low-level, and high-

level parameters required for the optimization. This module is introduced as the graphical

user interface (GUI) plugin within the VE-Suite. The main page of the designer preference

module is shown in Fig. 6.1.

 102

Fig 6.1 Design Preference Module – Main Window

The low-level and high-level parameters (or variables) that need to be transferred to

the computational unit have to be registered. The code fragment that registers the variables

for the interactive image segmentation project is presented in Fig. 6.2. The user interface

module is generic, and pre-compiled implementation, i.e., the designer can work on their

choice of image without having to compile the code. The designer interaction plugin begins

with the input of a Portable Pixmap (ppm) image file. The ppm file consists of pixel location

and its color values in the ASCII format. The image file is input using regular file input

dialog. In the next step, the designer needs to provide the interactive system with high-level

parameters.

 103

InteractiveSegmentation::InteractiveSegmentation()
{

name = "InteractiveSegmentation";
 RegistVar("mutationrate", &mutationrate);
 RegistVar("crossoverrate", &crossoverrate);
 RegistVar("popsize", &popsize);
 RegistVar("initsegments", &initsegments);
 RegistVar("currsegments", &currsegments);
 RegistVar("maxsegments", &maxsegments);
 RegistVar("combgraphname", &combgraphname);
 RegistVar("replacemethod", &replacemethod);
 RegistVar("crossovermethod", &crossovermethod);
 RegistVar("mutationmethod", &mutationmethod);
 RegistVar("checkinggene", &checkinggene);
 RegistVar("terminationmethod", &terminationmethod);
 RegistVar("designparamnames", &designparamnames);
 RegistVar("designparams", &designparams);
 RegistVar("upperlimits", &upperlimits);
 RegistVar("lowerlimits", &lowerlimits);
 RegistVar("activeindexs", &activeindexs);
 RegistVar("inactiveindexs", &inactiveindexs);
 RegistVar("checkingcreature", &checkingcreature);
 RegistVar("totalruns", &totalruns);
 RegistVar("totalmatingevents", &totalmatingevents);
 RegistVar("stdimagefilename", &stdimagefilename);
 RegistVar("interactiontype", &interactiontype);
}

Fig. 6.2 Variable Registration Code

High-level parameters setup. The high-level parameter setup or the design parameter

setup user interface is illustrated in Figure 6.3. The X_GEN, Y_GEN and WEIGHTS in the

right side of the design parameter setup user interface indicate the high level parameters. The

X_GEN and Y_GEN correspond to the tile centers and WEIGHTS represent numerical

weights of the tile centers. The number of design parameters remains the same for all the test

images. Based on the input image file and the design parameters a constraint file is

automatically generated.

 104

Figure 6.3 High-level Parameter Setup User Interface

The typical constraint file for an 1187x844 aerial survey image is shown in Fig. 6.4.

The code fragment that accepts the designer supplied input image file and automatically

generates the constraints file is shown in Fig. 6.5.

X_GEN 0 1187
Y_GEN 0 844
WEIGHTS 5.0 100.0

Fig 6.4 Design Constraints for an Aerial Survey Image

 105

Void UI_TopFrame::CreateConstraintFile
{ wxFileDialog dialog
 (this,
 _T("Load image file"),
 _T(""),
 _T(""),
 _T("All files (*.*)|*.*")
);

 dialog.SetDirectory(wxGetHomeDir());

 if (dialog.ShowModal() == wxID_OK)
 {
 wxString info;
 std::string stdinfo;
 info = dialog.GetPath().c_str();
 ReadImageFile(info);
 stdinfo = info.mb_str();
 SetImageFileName(stdinfo);
 }

 unsigned int width, height;
 height = GetImageHeight();
 width = GetImageWidth();

 std::ofstream constraintsetup;
 constraintsetup.open("constraints.txt", std::ios::out);
 constraintsetup<<"X_GEN"<<"\t"<<"0"<<"\t"<< width << std::endl;
 constraintsetup<<"Y_GEN"<<"\t"<<"0"<<"\t"<< height << std::endl;
 constraintsetup<<"WEIGHTS"<<"\t"<<"5.0"<<"\t"<<"100.0"<<std::endl;
 constraintsetup.close();
}

Fig. 6.5 Input Image Setup and Constraint File Generation

The initial image segments, the current image segments, and the maximum image

segments are the parameters that determine the starting conditions and stopping criteria for

the segment optimization process. The interaction type can be chosen as either 0 (random) or

1 (interactive). When the interaction type is chosen to be 1 the optimization process can be

controlled on-the-fly by using designer generated image segment locations. The designer

 106

created interactive population files get loaded. And the designer gets the opportunity to

develop the tile centers using an interactive segment generator canvas according to their

knowledge or point of interest in the image. The interactive segment generation can be done

even when the optimization runs are in progress.

Advanced interaction - interactive segment generator canvas. The interactive

segment generator canvas was specifically developed for this research work. This canvas

class shown in Fig. 6.6 was developed using OpenGL and wxWidgets. The OpenGL takes

care of the drawing or removing images and tile centers (or points) in the visual area. The

wxWidgets was used for user interaction and file generation purposes. A brief tour of this

canvas class is presented in this section. On the top layer of this canvas “Load Icon”, “Init

Generator Points”, and “Interactive Generator Points” buttons are listed. The “Load Icon”

initiates the input image file, in Fig. 6.6 the aerial survey image is loaded. The number of

image segments (or points) needs to be input. Using this canvas the designer can choose from

50 up to 2800 segments. After the number of segments was chosen, the “Init Gen. Points”

button needs to be selected to get the initial (random) tile centers in the screen. This is

represented by small black dots on the screen. Once the tile centers show up on the screen,

the designer can interactively (by mouse) move these tile centers to very interesting (high

feature density) regions of the image. After the tile centers are moved to the appropriate

locations (as desired by the designer) then the “Interactive Gen. Points” or “Redraw Points”

button should be clicked. The screen will display the latest tile center locations. “Write Points

Data” should now be selected to enable the designer enter the filename to store the tile

centers and their corresponding weights. This file now holds a solution for the evolutionary

optimization.

 107

Figure 6.6 Interactive Image Segmentation Canvas

If multiple interactive solutions are to be generated, then the same procedure listed

above should be followed and “Add Points Data” button has to be clicked to append to the

tile center data to the same file. Using “Add Points Data” any number of interactive solutions

can be generated. “Remove Icon & Points” button should be clicked to clean up the canvas

window to get clear white screen. This interactive segmentation canvas is exited by selecting

“Update” button.

Low-level parameters user interface. The low-level parameters (method specific)

such as population size (32), number of mating events (200), number of evolutionary runs

(10) is provided by the designer. The choice of mutation, crossover, and replacement are to

 108

be given to the system in addition to the stopping criteria for the evolutionary algorithms.

The stopping critera for the evolutionary runs are generally designer specified, they are, (i) if

the number of segments of a solution reaches the maximum number of segments specified by

the designer, or (ii) if the specified maximum number of mating events are reached, or (iii) if

image specific minimum segment variation is achieved. The designer inputs the low-level

parameter using the user interface shown in Fig. 5.7.

6.2 Interactive Optimization Module

This module is developed as a plugin to the computational engine (VE-CE) of the

VE-Suite. The variables registered in Fig. 5.4 are sent across to the interactive optimization

module. Using VE_XML classes of the VE_Suite the both the high and low-level

parameters, their corresponding numerical limits are sent to the optimization module. The

interaction designer need not be an expert in XML as the VE_XML implementation of VE-

Suite completely takes care of data transfer. The optimization module code fragment that

accepts these parameters are shown in Fig. 6.7. The values accepted by the computational

unit are “set” and “get” using parameter class. The parameter class methods are accessible by

almost all the classes of the computational unit.

109

void Body_Unit_i::SetParams(::CORBA::Long module_id, const char*
param)
ACE_THROW_SPEC((CORBA::SystemException,Error::EUnknown))
{

 std::cout<<UnitName_<<" :SetParams called"<<std::endl;

 unsigned int i,j;
 VE_XML::XMLReaderWriter networkWriter;
 networkWriter.UseStandaloneDOMDocumentManager();
 networkWriter.ReadFromString();
 networkWriter.ReadXMLData(param,"Command","vecommand");

std::vector<VE_XML::XMLObject*>
objectVector=networkWriter.GetLoadedXMLObjects();
std::cout<<"Object vector
size:"<<objectVector.size()<<std::endl;

// This displays all the params (in XML format) transferred
from GUI to Unit

 std::string commandName;
 callcount++;
 if(callcount==1)
 {
 for (i=0; i<objectVector.size(); i++)
 {
 VE_XML::Command* params =

 VE_XML::Command* >(objectVector.at(i));
 unsigned int num = params->GetNumberOfDataValuePairs();
 commandName = params->GetCommandName();
 VE_XML::DataValuePair* curPair;

 if(commandName == "popsize")
 {
 curPair = params->GetDataValuePair("popsize");
 curPair->GetData(popsize);
 }
 else if(commandName == "initsegments")
 {
 curPair = params->GetDataValuePair("initsegments");
 curPair->GetData(initsegments);
 }
 else if(commandName == "currsegments")
 {
 curPair = params->GetDataValuePair("currsegments");
 curPair->GetData(currsegments);

 }
 else if(commandName == "maxsegments")
 {
 curPair = params->GetDataValuePair("maxsegments");
 curPair->GetData(maxsegments);
 }

110

else if(commandName == "combgraphname")
 {
 curPair = params->GetDataValuePair("combgraphname");
 curPair->GetData(combgraphname);
 std::cout<<"combgraph"<< combgraphname <<std::endl;
 }
 else if(commandName == "stdimagefilename")
 {
 curPair =

params->GetDataValuePair("stdimagefilename");
 curPair->GetData(stdimagefilename);
 }
 else if(commandName == "checkinggene")
 {
 curPair = params->GetDataValuePair("checkinggene");
 curPair->GetData (checkinggene);
 }
 else if(commandName == "crossoverrate")
 {
 curPair = params->GetDataValuePair("crossoverrate");
 curPair->GetData (crossoverrate);
 }
 else if(commandName == "mutationrate")
 {
 curPair = params->GetDataValuePair("mutationrate");
 curPair->GetData(mutationrate);
 }
 else if(commandName == "replacemethod")
 {
 curPair = params->GetDataValuePair("replacemethod");
 curPair->GetDataString();
 }
 else if(commandName == "crossovermethod")
 {
 curPair = params->GetDataValuePair("crossovermethod");
 curPair->GetDataString();
 }
 else if(commandName == "mutationmethod")
 {
 curPair = params->GetDataValuePair("mutationmethod");
 curPair->GetDataString();
 }
 else if(commandName == "terminationmethod")
 {
 curPair =

params->GetDataValuePair("terminationmethod");
 curPair->GetDataString();
 }
 else if (commandName == "designparams")
 {
 curPair = params->GetDataValuePair("designparams");
 curPair->GetData(designparams);
 }

 111

else if (commandName == "designparamnames")
 {

 curPair =
params->GetDataValuePair("designparamnames");

 curPair->GetData(designparamnames);
 }
 else if (commandName == "upperlimits")
 {
 curPair = params->GetDataValuePair("upperlimits");
 curPair->GetData(upperlimits);
 }
 else if (commandName == "lowerlimits")
 {
 curPair = params->GetDataValuePair("lowerlimits");
 curPair->GetData(lowerlimits);
 }
 else if (commandName == "totalmatingevents")
 {
 curPair =

params->GetDataValuePair("totalmatingevents");
 curPair->GetData(totalmatingevents);
 }
 else if (commandName == "totalruns")
 {
 curPair = params->GetDataValuePair("totalruns");
 curPair->GetData(totalruns);
 }
 else if(commandName == "interactiontype")
 {
 curPair =

params->GetDataValuePair("interactiontype");
 curPair->GetData(interactiontype);
}

 else
 {
 curPair =

params->GetDataValuePair("checkingcreature");
 curPair->GetData(checkingcreature);
 }
 }
 std::cout<<"Got XML commands "<<std::endl;

 Fig. 6.7 Setparams Function of the computational unit

Initial population selection. Before the evolutionary optimization runs starts the

values of both low and high-level parameters are supplied to the EA class. Based on the

interaction type (manual or interactive), the evolutionary algorithm run number, and the

 112

image file the EA population gets loaded. The code fragment that accomplishes this task is

shown in Fig. 6.8.

Imagefilename = cfdVeParamsManager::getInstance().GetVeParams()-
>GetImageFileName();
std::ostringstream temp_file_name;

if(InteractionType == 1)
{
 temp_file_name<<imagefilename<<"_Intrun"<<run
<<"_"<<popsize<<".txt";
}
else
{
 temp_file_name<<imagefilename<<"_run"<< run <<"_"<<popsize<<".txt";
}
fileName = temp_file_name.str();
file.open(fileName.c_str());

Fig. 6.8 Loading Initial Population for the Optimization Runs

The designer may choose to select the population size as per their requirements.

Typically a population size of 32 or 64 is recommended. Each solution represents the original

image in the form of image segments. If the interaction type is chosen to be 1, then out of the

32 solution population, the tile centers were chosen at random for 29 solutions and the

remaining 3 solutions were completely designed by the designer. Depending on the image

features and high color variances the designer can pick, move, and add tile centers in such

interesting areas and delete the tile centers from the less interesting areas. Nearly 10% of the

population was desired to be interactive in this work. Hence, only 3 interactive solutions per

population were chosen. The designer developed segments were generated using an

interactive design canvas.

 113

Initial fitness evaluation. Once the initial population is supplied the initial fitness

values needs to be evaluated. To evaluate the fitness, the given Voronoi generators should

first be used to represent the image as ‘N’ image segments. To segment the original image

the Voronoi generators (or tile centers) are needed. Since weighted Voronoi tessellations are

used in this work, the numerical weight corresponding to the tile centers are also needed. The

numerical weight r for the tile center is the square root of variance within a square region.

The size of the square region is proportional to the number of tiles used to represent the

image. Equation (6.1) is used to estimate the size of the square region, S. Let N is the number

of image segments used to represent the image. As the optimization proceeds, the value of N

is incremented to decrease the color variance in each image segment. The constant terms w

and h are respectively the width and the height of the original image. The product of w and h

is the number of pixels (Np).

S = Integer
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

N
N p (6.1)

Based on these segments, the fitness value of a solution can be estimated using equation 6.2.

The term Var in equation (6.2) indicates the color variance in each image segment. During

the estimation of initial fitness if the variance value of a segment is above the designer

prescribed threshold then an additional Voronoi Generator is added, i.e., the segment size is

increased by one. Now, the fitness values of the entire population have been evaluated.

Fitness =
N

Var
N

i
i∑

=1
)(

 (6.2)

 114

The initial population was represented with 50 segments each, i.e., 50 tile centers

with their corresponding numerical weights. Hence, pre-optimized initial image segments are

created using weighted Voronoi tessellations. At this stage, the test image is represented by

50 segments (or a maximum of 50 unique colors). This may not be sufficient to reproduce the

image efficiently. Evolutionary optimization technique is implemented to minimize the

segment variance in each segment. This is done by moving and adding tile centers during

evolutionary optimization process.

Optimization process. The evolutionary algorithm begins by selecting a parent at

random. The co-parent selected using roulette selection. Two-point crossover with

probabilistic mutation is used. The parent and the co-parent may have different gene lengths.

Hence both crossover points are chosen to be within the length of the smaller mating

member. The probabilistic mutation has a 50% chance of increasing the weights of ‘n’

random generator points by 10, and a 25% chance of increasing the number of Voronoi

generators up to 10 with newly defined points and weights. The remaining 25% of the

mutation probability decreases the weights of ‘n’ random generator points by 1.The gene

length of the solution represents the number of image segments used to represent the image.

As the evolution proceeds, the gene length of all the solutions in the population does not

remain the same. Depending on the feature density, the designer user can add and remove a

number of image segments from a current solution in the evolving population. During the

evolutionary optimization run, at regular intervals, the designer can insert a new solution in

place of the solution that has the least fitness value. These solutions can be generated on-the-

 115

fly using the interactive segmentation canvas without disturbing the EA runs. This tweaked-

up solution is sent to the evolving population to guide the evolutionary process.

If the color variance in each image segment approaches zero, then the optimum value

is said to be reached. The designer can relax this condition depending on the features that are

essential for the decision making. Evolutionary algorithms are used for wide exploration of

the search space. This technique has many parameters to update after evolutionary run.

Simple and yet powerful stochastic technique in evolution strategies are currently being

explored to speed-up the optimization process. Evolutionary strategies can be used on image

segments that are obtained from the evolutionary algorithms. Preliminary work on

evolutionary stained glass strategies for evolving image segments have given encouraging

results to try this technique for speeding up the evolutionary segmentation process [Ashlock

et al., 2006].

6.3 Interactive Segmentation Visualization

The optimized and segmented image data is stored in a text file. The details available in the

text file are the Voronoi generator points, their numerical weights, and their color value.

These interim image segment text files are generated at the end of every 10 mating events. If

the designer observes if the visual quality of the image segments remaining stagnant as the

mating event progress, then suitable preference articulation can be given to the computational

unit either directly through the least fit solution replacement or by supplying new initial

population. Computational engine (VE-CE) in the VE-Suite controls the segmentation and

optimization algorithm. Computational unit is the plugin to the VE-CE. The computational

unit uses the interim image segment text files to create the interim image segments. If the

 116

designer finds that the interim image segments generated are of sufficient quality for making

decisions, then the evolutionary runs can be stopped. The segmented image can be displayed

either directly through any image viewing software or in the graphical plugin of the

VE_Suite. The quality of the optimized image segments are assessed using the decision

quality index of images, developed by [Karthikeyan et al., Submitted]. If the quality of the

segmented image segments is not acceptable, then the re-optimization is done by changing

the low and high level parameters that form a part of user interface and computational

engine.

 117

CHAPTER 7. IMPLEMENTATION OF PROGRESSIVE
INTERACTION SYSTEM FOR SHAPE OPTIMIZATION

7.1 Designer Preference Module

Fig. 7.1 shows the main window of the designer preference module for the shape

optimization problem. On selecting the icon of the fin the application specific

implementation can be accessed. The designer should be aware of the high-level and low-

level parameters that need continuous or intermittent interaction. Low level parameters

include population size, crossover, mutation, and replacement operators. In addition, the total

number of mating events, and the number of evolutionary runs are also provided through the

designer preference module. The user interface shown in Fig. 5.7 is used for providing the

low-level parameters to the interactive optimization system. The parameters used for this test

case must be registered before they can be accessed or modified by the designer. The code

fragment used to register the parameters is shown in Fig. 7.2.

Fig. 7.1 Designer Preference Module – Main Window

 118

HeatExchanger::HeatExchanger()
 {
 name = "HeatExchanger";

 // Register the parameters that need to sent to the Unit
 RegistVar("mutationrate", &mutationrate);
 RegistVar("crossoverrate", &crossoverrate);
 RegistVar("popsize", &popsize);
 RegistVar("replacemethod", &replacemethod);
 RegistVar("crossovermethod", &crossovermethod);
 RegistVar("mutationmethod", &mutationmethod);
 RegistVar("checkinggene", &checkinggene);
 RegistVar("terminationmethod", &terminationmethod);
 RegistVar("designparamnames", &designparamnames);
 RegistVar("designparams", &designparams);
 RegistVar("upperlimits", &upperlimits);
 RegistVar("lowerlimits", &lowerlimits);
 RegistVar("activeindexs", &activeindexs);
 RegistVar("inactiveindexs", &inactiveindexs);
 RegistVar("checkingcreature", &checkingcreature);
 RegistVar("totalruns", &totalruns);
 RegistVar("totalmatingevents", &totalmatingevents);
 RegistVar("degree", °ree);
 RegistVar("interactiontype", &interactiontype);
}

Fig. 7.2 Registeration of Parameters for Shape Optimization

High level parameters. These are the problem-specific parameters. For instance, in

this test case, the high level parameters are the fin spacing, the fin base thickness, fin length

(x coordinates), fin degree (n), and the y-coordinates ((n+1) points, along the fin length).

Except the constant parameters, in this case, the fin length (0.75), all the other high-level

parameters make up the gene for the evolutionary optimization. The user interface begins

with the input of fin profile degree and the interaction type. If the fin profile degree is chosen

to be 3, then a total of 4 y values exist, i.e., Y_0, Y_1, Y_2, and Y_3. After providing these

two values, this module automatically generates the design setup file. The code fragment that

 119

automatically generates the design setup file based on the fin degree is shown in Fig. 7.3.

This function also uploads the high-level parameters in the right side of the high-level

parameter setup dialog on selecting “Load Parameters from File” button, as shown in Fig.

7.4. The constraints file is automatically generated based on the user specified values of fin

degree. The user inputs this constraint file to set the numerical limits of the high-level

parameters. The base thickness and fin spacing range between [0,1]. The Y coordinate values

range from 5% to 80% of fin spacing.

 Fig. 7.3 Design Setup File Generation

std::ofstream designsetup;
 designsetup.open("DesignSetup.txt", std::ios::out);
 designsetup<<"BASE_THICKNESS"<<std::endl;
 designsetup<<"FIN_SPACING"<<std::endl;
 for(int i=0; i<(degree+1); ++i)
 {
 designsetup<<"Y_"<<i<<std::endl;
 }
 designsetup.close();

 wxFileDialog dialog
 (this,
 _T("Load design setup file"),
 _T(""),
 _T(""),
 _T("All files (*.*)|*.*")
);

 dialog.SetDirectory(wxGetHomeDir());

 if (dialog.ShowModal() == wxID_OK)
 {
 wxString info;
 info = dialog.GetPath().c_str();
 std::ifstream designsetupfile;
 designsetupfile.open(info);
 std::string temp_string;
 while(designsetupfile>>temp_string)
 {
 m_lbox->Append(temp_string.c_str());
 }
 designsetupfile.close();
 }

 120

Fig. 7.4 High-level Parameter Setup Dialog

If the interaction type is chosen to be 1 then the designer has the flexibility of generating

his/her own population based on his specific knowledge. This gives a method of isolating the

parameters that prior knowledge or interactive design have shown do not significantly

contribute to the system performance. If the interaction type is chosen to be 0 then the

designer accepts the random initial population.

Interactive fin profile design canvas. Fig. 5.8 displays the interactive profile

selection canvas developed as a part of this research. This interactive canvas was developed

using wxWidgets and OpenGL. The designer needs to provide the number of fin profiles that

need to be generated using this interactive canvas and the degree of each fin profile. Based

on the profile degree the Y values get enabled or disabled accordingly. All the high-level

parameters, i.e., Y values, fin spacing and fin base thickness can be interactively selected

 121

using sliders. Once after all the required selections are done, the fin profile is drawn in the

design canvas window. This gives the designer an idea if the fin profile that they are

interested may or may not work. In Fig. 5.8, the fin profile is shown in solid line and the

dotted black lines show the constraints. The designer can write the high-level parameters into

a file that makes up the gene for evolutionary optimization runs. Multiple fin profiles can be

added on this canvas by clearing the screen and providing the new set of high-level

parameters. This information can be written out as a separate file or as an appendage to the

existing interactive fin profile file.

7.2 Interactive Optimization Module

The variables registered in Fig. 7.2 are sent to the computational unit. The code

fragment similar to the one shown in Fig. 5.10 accepts the variables. As presented in the

Interactive Optimization Module of Chapter 5, the evolutionary optimization runs need both

low-level and high-level parameters. Based on the interaction type: random or interaction the

initial population files get loaded. The population files are decided based on the fin degree,

and the run number. The fitness values of the fin profiles are estimated in terms of a

dimensionless Nusselt number as described in Chapter 4. The fitness values are normalized

in the range of [0,1]. The fitness values are determined using the numerical solver originally

developed by Suram et al., [2006]. The call to the numerical solver from the optimization

module is shown in Fig. 7.5.

 122

double cfdCalcCaseImpForModel::FindFitness(std::vector<double>
values)
{

double temp;
 double *Yvalues;
 int size = values.size();
 int degree = (size – 3);
 Yvalues = new double[degree+1];

 for(int i=0; i<(size-2); ++i)
 {
 Yvalues[i] = values[i+2];
 }

 RunModel run((size-3),0.75,values[0],values[1],Yvalues);

 NewVectorValues.clear();
 NewVectorValues = run.GetNewParamValues();
 temp = run.GetFitness();

 std::cout<<"Fitness from FindFitness is :"<<temp<<std::endl;
 delete [] Yvalues;
 return temp;

}

Fig. 7.5 Call for Fitness Evaluation

The class RunModel accepts the fin profile values as per the constraints. This class divides

the fin model shown in Fig. 4.5 into 6 parts, three parts along the fluid region, one part along

the fin length, and two parts along the fin base. The RunModel class acts as the master class

to generate grid, solve the fluid flow, and energy equations to determine the fitness values.

The fitness values are normalized in the range of [0, 1]. The designer specified profiles are

free from abrupt changes in curvature. Hence, the fitness values are within the normalized.

However, for the fin profiles generated using random population had the abrupt change in

curvature resulting in the fitness value equal to “Nan”. To address this issue, the problematic

profiles are revisited within the RunModel class using new profile values. The RunModel

class also develops the data file and the VTK file for each fin profile during initial fitness

 123

evaluation and during evolutionary process. During the optimization process, the designer

has the option to “inject” their knowledge by replacing a low performing member in the

population with their choice of solution. This is done at specified locations, say after every

10 mating events.

7.3 Interactive Visual Analysis

The VTK files are generated in the computational unit after every mating event. The

best VTK files after every 10 mating events are supplied to the graphical engine where the

results are shown in an immersive virtual environment. The VTK files will be loaded as per

designers’ input from the GUI. The progress of the evolutionary algorithms would influence

the designer’s reaction. If the fitness progress report in the interactive environment shows no

improvement, then the designer is prompted to develop a better gene structure for a few

solutions in the population and retry the evolutionary process. If the fitness progress is

contributed by some solutions, then the designer can select and copy the solutions that are

responsible for tremendous fitness growth. A sample visual output of a third degree fin

profile with temperature distribution is shown in the Fig. 7.6. The red regions in the Fig.

indicate maximum temperature and the blue regions indicating the minimum temperature.

 124

Fig. 7.6 Temperature Distribution in a Third Degree Fin Profile

 125

CHAPTER 8. IMPLEMENTATION OF PROGRESS INTERACTION
SYSTEM FOR NOZZLE OPTIMIZATION

As discussed for the other two test cases, the designer preference module and

computational unit are implemented for the nozzle problem. The designer preference module

in this test case is implemented in such a way that the nozzle evolutionary optimization runs

can start from any intermediate locations, in terms of solutions initial fitness evaluation,

mating events, and evolutionary runs. The new feature added to the computational unit is that

in addition to accepting to start the runs from an intermediate location, this unit also accepts

the designers’ choice of parents for evolutionary mating events. The details regarding the

implementation are presented in the rest of this Chapter.

8.1 Designer Preference Module

Fig. 8.1 shows the launching window for the designer preference module for this

problem. On selecting on the nozzle icon in this window all the application specific

parameters can be accessed by the designer. The first step in the implementation is to register

the variables used in this work, similar to the one shown in Fig. 7.2. The second step is to

identify the low level and high level parameters for the optimization. The low-level

parameters discussed for the other two test cases are applicable for this case. In addition, the

details regarding the current run, current mating event number, and current creature are

needed. This is presented in Fig. 8.2.

 126

Fig. 8.1 Designer Preference Launcher for Nozzle

Fig. 8.2 Low-level Parameter Setup Dialog

As shown in Fig. 8.2, using this information, the computational unit can start the run

number 6 starting with the mating event number 50. However, the high level parameters for

this case include interaction type, current and initial horn points, maximum horn points,

nozzle length, entrainment length, and the horn point data. The details of the high level

parameters are presented in Fig. 8.3. Unlike the high level parameter user interface of the

other two cases, this case asks the designer to specify the “RunType”. If this type is chosen to

 127

be 1, then the evolutionary optimization can start from any specified location that the user

wants. In addition, the designer can choose a variety of physical parameters, mesh

parameters, and flow parameters as shown in Figs. 8.4-8.7.

8.3 Designer Interface for High-level Nozzle Parameters

 128

Fig. 8.4 CFD Physical Parameters Setup Dialog

Fig. 8.5 CFD Flow Parameters Setup Dialog

 129

Fig. 8.6 CFD Mesh Parameters Setup Dialog

Fig. 8.7 Solver Parameters Setup Dialog

 130

Interactive nozzle profile canvas. Fig. 8.8 displays the interactive nozzle profile

canvas developed as a part of progressive interaction. This canvas is enabled before, during,

and even after the evolutionary optimization runs are completed. The designer needs to

specify the number of horn points, nozzle length and entrainment length. The horn thickness,

the parameters like inlet length, and inlet diameter are provided in the CFD physical

parameters are accessed by this canvas.

Fig. 8.8 Interactive Nozzle Profile Canvas

The canvas shows the flow envelope, which is 36”x5”, within this flow envelope the

nozzle is placed. Another envelope (for nozzle horn profile) was displayed initially. This

envelope gave the designer the information on where exactly their horn points have to be

located. Based on this, the designer can mouse click on the locations to generate the nozzle

horn profile as shown in the Fig. 8.8. The canvas is also equipped with the file handling

 131

routines to generate population files consisting of these interactive nozzles generated by the

designer.

8.2 Interactive Optimization Module

As shown in Chapters 6 and 7, the variables are registered before they are sent to the

computational unit. As presented in the Interactive Optimization Module of Chapter 5, the

evolutionary optimization runs need both low-level and high-level parameters. The designer

input of the high-level parameters for the nozzle optimization is done as presented in Figs.

8.3 to 8.9. Based on the interaction type and the number of nozzle horn points the

corresponding initial population files get loaded. The fitness values of the nozzle profiles, the

magnification ratios are estimated using equation (4.8). This interactive optimization module

is integrated with the “nozzle” solver class developed by Engelbrecht [To be submitted]. The

nozzle solver defines the boundary points for generating the mesh around the flow area. Prior

to defining the boundary points for generating mesh the nozzle profile horn points have to be

defined. For the random nozzle population the horn points are generated as a part of the

nozzle solver. The design parameters: nozzle length, entrainment length and the coordinate

values of the horn points are automatically assigned. In contrast, for the interactive nozzle

population the horn points are defined based on user input using the design canvas as

presented in Fig. 8.8. By developing a simple function the capability of the nozzle solver is

extended to handle designer interactive parameter values. The code fragment presented in

Fig. 8.9 illustrates the implementation of “NozzleParamsForFitnessEstimation” function.

 132

void Nozzle::NozzleParamsForFitnessEstimation
(std::vector<double> values, int id)
{
 int i, j, numparams;

 numHornPoints = values.size();
 numHornPoints = (numHornPoints-2)/3;
 numparams = cfdVeParamsManager::getInstance().GetVeParams()-
>GetDesignParamsNum();

 j = 2;
 nozzleLen = values.at(0);
 entrainLen = values.at(1);

 for(i=0; i<numHornPoints; ++i)
 {
 while(j < ((3*i) + numparams))
 {
 if((j-2)%3 == 0)
 {
 hornPoints[i+1]->SetX(values.at(j));
 }
 else if((j-2)%3 == 1)
 {
 hornPoints[i+1]->SetY(values.at(j));
 }
 else if((j-2)%3 == 2)
 {
 hornPoints[i+1]->SetZ(values.at(j));
 }
 j++;
 std::cout<<std::endl;
 }
 }

}

Fig. 8.9 Implementation to Handle Designer Interactive Nozzle Population

The driver function that communicates with the nozzle solver class is developed as a part of

the interactive optimization module. The code fragment shown in Fig. 8.10 contacts the

nozzle solver and all its methods using the nozzle class object (NozzList). It is worth noting

 133

that the “NozzleParamsForFitnessEstimation” code presented in Fig. 8.9 is called from the

code shown in Fig. 8.10.

double cfdCalcCaseImpForModel::FindFitness(std::vector<double>
values, int id)
{
 double temp;
 int run, currmev, currhornpoints;
 std::ofstream tempfile;

 currmev = cfdVeParamsManager::getInstance().GetVeParams()-
>GetCurrentMatingEvent();
 run = cfdVeParamsManager::getInstance().GetVeParams()-
>GetCurrentRun();
 hp = cfdVeParamsManager::getInstance().GetVeParams()-
>GetCurrentHornPoints();

 if(currmev == -1)
 {
 MakeNozzleDirectory(id);
 }

 tempfile.open("setup", ios::out);
 tempfile << "#!/bin/csh -f" << endl;
 tempfile << "cd ./nozzle" << id << "/run_" <<run<<"/"<< endl;
 tempfile.close();

 tempfile.open("run", ios::out);
 tempfile << "#!/bin/csh -f" << endl;
 tempfile << "cd ./nozzle" << id << "/run_" <<run<<"/"<< endl;
 tempfile << "source /usr/local/starcd/etc/setstar" << endl;
 tempfile << "$STARDIR/bin/star" << endl;
 tempfile.close();

 NozzList[id]->NozzleParamsForFitnessEstimation(values, id);
 std::cout << "Params supplied to Nozzle class"<<std::endl;

 buildNozzle(id, currmev, run);

 temp = NozzList[id]->finalMag;
 std::cout<<"Fitness from FindFitness is :"<<temp<<std::endl;
 return temp;
}

Fig. 8.10 Calls for Nozzle Fitness Evaluation

 134

The code presented in Fig. 8.10 makes individual nozzle directories. In addition, a setup file

and run file are also generated based on the nozzle number. The setup file consists of the

information required to start the commercial CFD software (STAR-CD). The information

that can be found in the setup file include: nozzle number, commands to open the STAR-CD,

maximum number of vertices, mesh details, boundary conditions, etc. The buildNozzle()

function shown in Fig. 8.10 calls the nozzle solver class to setup the border points, write

nozzle mesh, write boundary conditions, save the .ccm model, execute and run the STAR-

CD. A typical setup file for the nozzle is shown in Appendix. The run file sources the

installation directory to start the STAR-CD solver.

 The evolutionary mating operations should take place to evolve an optimum nozzle

configuration. In this work, the roulette wheel selection is used to select the parent and the

co-parent. The roulette replacement is used to select the child1 and child2. In addition to

these roulette wheel selection, the designer can also free choose the parents for the

evolutionary mating operation. The Fig. 8.11 shows the MatingOperation function that

clearly illustrates the forward and reverse crossover to produce new nozzle configurations

that go in as child1 and child2 respectively. Thus a two point crossover was used for this

work. The best nozzle profile after each evolutionary run is stored as a GIF file. These GIF

files can be viewed externally or can be visualized through the graphical plugin.

 135

Fig. 8.11 Code Fragment for Evolutionary Mating Operations

void cfdCalcCaseImpForModel::MatingOperations(int parent1, int
parent2, int child1, int child2)
{ Nozzle *MatingNozzle;
 float crossLen;
 int currmev = cfdVeParamsManager::getInstance().GetVeParams()-
>GetCurrentMatingEvent();
 int run = cfdVeParamsManager::getInstance().GetVeParams()-
>GetCurrentRun();

 MatingNozzle = new Nozzle(hp, ch);
 crossLen = MatingNozzle->chooseCrossOver(NozzList[parent1],
NozzList[parent2]);
 // Forward Crossover For Child 1
 if(crossLen != -1.0f){
 //NozzList[child1]->removeOldFiles(child1, run);
 NozzList[child1]->crossOver(NozzList[parent1],
NozzList[parent2], child1, crossLen);
 std::cout << "Complete forward crossover function for MEN "
<< currmev << endl;
 }
 else{
 NozzList[child1]->removeOldFiles(child1, run);
 NozzList[child1]->defineHornPoints(hp);
 }
 buildNozzle(child1, currmev, run);
 if (NozzList[child1]->convergeFlag < 0)
 { mutateNozzle(child1, currmev, run); }
 else
 { LoadCreatures(child1); }
 matingHist << "Recomputed child (forward cross)" << child1 << "
Mag: " << NozzList[child1]->finalMag << endl;
 // Reverse Crossover For Child2
 if(crossLen != -1.0f)
 {
 //NozzList[child2]->removeOldFiles(child2, run);
 NozzList[child2]->crossOver(NozzList[parent2],
NozzList[parent1], child2, crossLen);
 std::cout << "Complete forward crossover function for MEN "
<< currmev << endl;
 }
 else{
 NozzList[child2]->removeOldFiles(child2, run);
 NozzList[child2]->defineHornPoints(hp);
 }
 buildNozzle(child2, currmev, run);
 if (NozzList[child2]->convergeFlag < 0){
 mutateNozzle(child2, currmev, run);
 }
 else {
 LoadCreatures(child2);
 }
}

 136

CHAPTER 9. RESULTS AND DISCUSSION

In this research work progressive designer interaction has been implemented with two

prime goals, they are, to determine the best possible engineering solution under the given

problem setup and constraints, and to expedite the engineering optimization process. With

these goals in place, this chapter is dedicated to study the results available on the test cases

that were used to demonstrate the progressive interaction. Parts (a) through (c) are the three

dedicated sessions that present and discuss the results available from all the three test cases.

Part (a) – Image Segmentation and Optimization

The results presented in this section are centered on two major areas. 1. The progress

of evolutionary algorithms in terms of fitness values and 2. The visual quality of the image

segments during and after the evolutionary runs. Since the image segment optimization is a

minimization problem, the lower fitness values are desired. The efficacy of the progressive

designer interaction on image segmentation and optimization is demonstrated by using four

test images. The test images are shown in the Fig. 9.1. The test images were chosen so that a

broad range of image features are covered. The first image is the one with simple features

(garden --image id. 1), second image is the most popular test image (Lena -- image id. 2), the

third one with most complicated features (greens -- image id. 3), and the fourth one is a

complex continuous tone aerial survey image (aerial survey -- image id. 4). The typical

binary sizes of these survey images are in the order of three to five megabytes. This image

segmentation algorithm was originally proposed for the efficient transfer of aerial survey

images to remote and low-bandwidth areas. In addition to satisfactory segmentation of aerial

 137

survey images a variety of photographic images were also segmented to demonstrate the

wide applicability of this segmentation algorithm. All the test images used for this work were

24 bpp true color images. Each of the RGB color channels had an 8-bit representation. The

file size details of the test images in the ASCII format, and pixel sizes are presented in Table

9.1.

 (a) Garden (b) Lena (c) Greens (d) Deere

Fig. 9.1 Test Images for Segmentation and Optimization

Table 9.1 Details of the Test Images

Image
Id.

Pixel Size Original file
size, (ASC), KB

Allowable Max.
Image segments

Garden 162 x 216 417 3000
Lena 512 x 512 3124 8000
Greens 320 x 240 915 5000
Deere 1187x844 11936 10000

 As presented in Chapter 4, weighted Voronoi tessellations were used to segment the

images according to Euclidean distance of the pixel from the Voronoi generators (or tile

centers). The image segments are then optimized using evolutionary algorithms to minimize

the color variance such that each segment (a group of pixels) can be represented by one color.

A 32 member (or solution) population evolutionary algorithms were used for this study.

Initially, each solution represented the test image using 50 image segments. A total of 10

 138

evolutionary runs were conducted using random population, and 10 evolutionary runs were

conducted using designer interactive population. In the random population, all the 32

solutions in the population were generated by the computer. In the interactive population,

nearly 10% of the solutions were created by the designer using the interactive image

segmentation canvas as shown in Chapter 6. In order to study the user-friendliness and

effectiveness of the implementation of progressive interaction scheme human subjects’

experiments were conducted. A total of 4 human subjects were used, 2 senior level graduate

students and 2 entry level graduate students with appreciable knowledge on image

processing. So a total of 8 evolutionary runs (2 runs per subject per image) were conducted

on each test image. The human subjects provided both the initial interactive population and

interactive solution replacement (during the evolutionary runs) using interactive

segmentation canvas. For all the evolutionary runs, 200 mating events were allowed. The

other stopping criteria includes the maximum number of image segments based on the image

pixel size and the average color variance for image segments should be less than or equal to

3.0 (i.e., unit color value variation in the R, G, B channels). The values of maximum

allowable image segments for the test images are presented in Table 9.1

In case of human subjects’ interaction and designer interaction, the user had an

opportunity to replace the existing solution in the population with their choice of solution

once in every 10 mating events. The progress of the evolutionary algorithms in terms of

fitness values are compared for random, designer interaction and human subjects’ interaction

evolutionary runs. The results of this comparison are presented in Figs. 9.2-9.5.

 139

Fig. 9.2 Comparison of Evolutionary Optimization runs for Garden Image

Fig. 9.3 Comparison of Optimization Runs for Lena Image

 140

Fig. 9.4 Comparison of Optimization Runs for Greens Image

Fig. 9.5 Comparison of Optimization Runs for Deere Image

 141

From Figs. 9.2-9.5, it is evident that the designer interactive and the human subjects’

interactive evolutionary runs are clearly ahead of the random runs. Thus the efficacy of the

progressive designer interaction in terms of progress of fitness values are demonstrated in

these Figs. It is understood that the average initial fitness of all the random, designer

interaction and human subjects’ interaction runs are comparable. As the evolutionary

algorithm moved forward the designer and human subjects were “smart” to learn the search

space and were able to capture the regions of the solution space that reduced the image

segment color variance. This was primarily achieved by adding more Voronoi generators in

the region where the designer perceived of high feature density. For all the four test images,

the performance of the designer interaction and the human subjects’ interaction were almost

comparable. This indicates that the implemented progressive interaction scheme gives

consistent results when the user clearly understands the underlying optimization concepts.

 The user was “smart” to move the Voronoi generators to the region of high details

and add more number of Voronoi generators whenever required. Adding more generators

reduced size of the image segments and hence the segment color variation. This resulted in

higher fitness values of the interactive runs. The appreciable image quality is required for the

designer to make use of these images and make decisions. During the evolutionary runs the

user needs to ensure that the optimization produces image segments with acceptable quality

so that the decisions can be made on-the-fly. To confirm this, the interim image segments

(after 50, 100, and 150 mating events) are compared. The results of this comparison are

shown in Fig. 9.6-9.9.

 142

(a) Random, MEV: 50 (b) Interactive, MEV: 50 (c) Hum. Subj. MEV: 50

(d) Random, MEV: 100 (e) Interactive, MEV: 100 (f) Hum. Subj. MEV: 100

(g) Random, MEV: 150 (h) Interactive, MEV: 150 (i) Hum. Subj. MEV: 150

(j) Random (final) (k) Interactive (final) (l) Hum. Subj. (final)

Fig. 9.6 Comparison of Garden Image Segments During Evolutionary Optimization

 143

(a) Random, MEV: 50 (b) Interactive, MEV: 50 (c) Hum. Subj. MEV: 50

(d) Random, MEV: 100 (e) Interactive, MEV: 100 (f) Hum. Subj. MEV: 100

(g) Random, MEV: 150 (h) Interactive, MEV: 150 (i) Hum. Subj. MEV: 150

(j) Random (final) (k) Interactive (final) (l) Hum. Subj. (final)

Fig. 9.7 Comparison of Lena Image Segments During Evolutionary Optimization

 144

(a) Random, MEV: 50 (b) Interactive, MEV: 50 (c) Hum. Subj. MEV: 50

(d) Random, MEV: 100 (e) Interactive, MEV: 100 (f) Hum. Subj. MEV: 100

(g) Random, MEV: 150 (h) Interactive, MEV: 150 (i) Hum. Subj. MEV: 150

 (j) Random (final) (k) Interactive (final) (l) Hum. Subj. (final)

Fig. 9.8 Comparison of Greens Image Segments During Evolutionary Optimization

 145

(a) Random, MEV: 50 (b) Interactive, MEV: 50 (c) Hum. Subj. MEV: 50

(d) Random, MEV: 100 (e) Interactive, MEV: 100 (f) Hum. Subj. MEV: 100

(g) Random, MEV: 150 (h) Interactive, MEV: 150 (i) Hum. Subj. MEV: 150

(j) Random (final) (k) Interactive (final) (l) Hum. Subj. (final)

Fig. 9.9 Comparison of Aerial Image Segments During Evolutionary Optimization

 146

From the results available from Figs. 9.6-9.9 it is understood that the user interaction plays a

significant role as the image size increases. For example, in 216x162 garden image though

the fitness values of the interactive images (both designer and human subjects) are higher

than that of the random image, very appreciable image quality variation can be felt.

However, in big images like Lena and aerial survey, very stark difference in the visual image

quality can be felt as early as 50 mating events. And as the mating events increased the visual

image quality from the random runs tend to catch up with that of the interactive runs. Despite

this the visual quality of the interactive images are better than the image segments generated

by random runs. Thus the results obtained from Figs. 9.6-9.9 are consistent with that from

Figs. 9.2-9.5.

Conclusion and Recommendations for Future Work

This part presented the results of the image segment optimization using the progressive

designer interaction. Image segmentation is a non-trivial problem and multiple feasible

solutions do exist. The results available so far establish that the designer interaction guides

the evolutionary algorithms to move towards the higher fitness regions during the early

stages of evolutionary process. As discussed earlier, the results of the EA depend on the

quality of the initial solutions and the path the EA traverses to reach the solution. Since this

problem is a variable length EA problem, the designer interaction mostly increased the

number of image segments thus resulting in more time to complete the mating events in case

of the interactive runs when compared to that of the random runs.

 147

The future work or enhancement research in this test case include: Use of curve

fitting algorithms within each image segment to reduce the evolution time especially for the

interactive segment optimization runs. In addition, evolutionary stained glass clustering

strategies are being studied as an enhancement to the evolutionary algorithm based

segmentation. Currently, the optimization module generates the output image segments for

every 10 mating events. They are viewed externally by using a variety of commercial and

non-commercial software. These image segment outputs can be displayed in the graphical

plugin of the VE-Suite. The control to load these image segments would come from the

designer preference module. Decision quality index of images was proposed by Karthikeyan

et al., [2006] to assess the quality degradation due to segmentation. In the interactive

environment, the designer can set up various components of this quality index and ensure

that the quality requirements are met by the image segments. This checking can be done

online. Finally, more number of test images with a wide variety of image feature density,

feature redundancy and structure needs to be segmented to study the efficacy of the

progressive designer interaction.

Part (b) – Shape Optimization of the Finned Heat Exchanger

Human-guided shape optimization task was performed to obtain an optimum fin

profile. It is essential to obtain an optimum profile to achieve maximum heat transfer through

the finned dissipater. The results presented in this section are centered on two major areas,

the progress of evolutionary algorithms in terms of fitness values, and evolution time per

optimization run. To study the efficacy of the progressive interaction scheme four fin profiles

(degree 1 through 4) were studied under three different conditions, viz., random optimization

 148

runs, designer interaction runs, and human subject runs. The problem parameters and

operational constraints remained the same for all the three run types. The human subjects

were used to study the repeatability of the performance of the progressive interaction scheme

and to demonstrate the ease to understand the problem even by a beginner. A total of 4 human

subjects were used for this work. Two senior level graduate students, out of which one has

good understanding on the thermo-fluids area and the other one with minimal exposure to

this subject. Two entry level graduates students, out of which one has a good grasp this

subject matter were used in the human subjects’ experiments.

Simple evolutionary algorithms were used to optimize profiles degrees 1 through 4.

The fin and the operating fluid were assumed to be aluminum and water respectively. The

ratio of their thermal conductivities i.e. /s fk k was taken to be 300 with

and . For each fin profile, a total of 10 evolutionary runs

each were performed in random and designer interactive optimization. In addition, 8 runs per

fin profile degree (2 runs per subject per profile) were conducted using human subjects’

interaction. For each evolutionary run a maximum 150 mating events were done. The other

stopping criterion is when the normalized fitness value is equal to or greater than 0.9. The

population size for both the random and interactive runs were chosen to be 32. For the

interactive population runs, nearly 10% of the population, say 3 solutions out of 32 were

designer/human subjects developed solutions. This chapter presents the results of a finned

heat exchanger shape optimization problem using continued human guidance. The use of an

interactive population in most cases permitted the algorithm to converge more quickly to an

acceptable solution whereas a random choice often got stuck in local optima. The designer’s

0.6 /fk W m= −K K−180 /sk W m=

 149

choice of “smart” initial population plays a significant role in speeding progress towards a

high quality solution. Figs. 9.10 to 9.13 compares the average fitness of random population,

designer generated population, and human subjects population. The data of these plots are

presented in the Appendix.

Fig. 9.10 Results of the Evolutionary Runs on the First Degree Fin Profile

 150

Fig. 9.11 Results of the Evolutionary Runs on the Second Degree Fin Profile

Fig. 9.12 Results of the Evolutionary Runs on the Third Degree Fin Profile

 151

 Fig. 9.13 Results of the Evolutionary Runs on the Fourth Degree Fin Profile

In all fin profiles shown in the Figs. 9.10 to 9.13, the average fitness values of the

designer or human subjects’ interactive populations were clearly ahead of those in the

random populations. This indicates better heat transfer performance of the fin profiles

generated by interaction. In addition, it is worth noting that the average initial fitness of all

the random, designer interaction, and human subjects’ interactions runs are all comparable.

As the mating events occur, the fitness of the interactive runs shot up due to careful insertion

of high performance solutions and rejection of low performing solution by the user. Thus the

efficacy of the progressive designer interaction in terms of progress of fitness values is

demonstrated through these Figs. The best fin profiles from each degree from a random,

 152

designer-created, and human subjects’ generated population are presented in Figs. 9.14 – 9.16

respectively.

All the dimensions are normalized [0,1] range. The fin base thickness ranging from 0

to 1 is represented in the negative x-axis. The fin spacing also in the range 0 to 1 is

represented along the y-axis. The fin length with a constant value of 0.75 is represented in the

positive x-axis. From Figures 9.14-9.16 it is evident that in most cases, the fin profiles

obtained from the both of the interactive techniques are smoother than that from the random

population. This indicates higher implementation feasibility of the interactive population due

to the profile simplicity. To explain the profile simplicity and its implementation friendliness

Fig. 9.17 shows the temperature and velocity distribution on a 3rd degree fin profile that was

generated using designer interaction.

 153

9.14 Best Fin Profiles for degree 1 to 4 using Random Population

 154

Fig. 9.15 Best Fin Profiles for degree 1 to 4 using Designer Interactive Population

 155

Fig. 9.16 Best Fin Profiles for degree 1 to 4 using Human Subjects’ Interaction

 (a) Temperature Distribution (b) Velocity Distribution

Fig. 9.17 Scalar Parameter Distribution in Designer Generated 3rd Degree Fin Profile

 156

 The second major of investigation in this test case is on time to complete an

evolutionary run. This check was not done on the image segmentation and optimization test

case presented in Part (a), because that problem involves varying gene length of the solution.

In addition, to reduce the image segment variance, the first choice of the designer is to

increase the number of segments, thereby increasing the computation time. In this test case,

that difficulty doesn’t exist as this test case involves fixed length of the gene through out the

mating events. Table 9.2 shows the average time required to complete one evolutionary run

in case of random, and both interactive evolutionary optimization processes. The time to

evolution includes the calls to the CFD solver, creation of visualization toolkit (VTK) files

for the solutions whenever a fitness evaluation routine is called and the time to accept the

designers’ choice of “smart” solution insertion during run time in case of designer interaction

or human subjects’ interaction.

Discussion on fin profiles. The most common fin profiles taper down. In this

research, the fin profiles are not designed to taper down. When the common fin profiles are

chosen for this work, the maximum velocity on the fluid occurs in the region outside of the

fin (circled in upper right side), as shown in Fig. 9.18. This does not help in heat dissipation

from the curved surface as best heat dissipation occurs when the maximum velocity is closed

to the curved surface. In addition, the fin spacing comes into the picture, wherein the spacing

cannot be too close because in that case the maximum velocity in the fluid occurs in the

region (circled in lower right side) above. This is because of the no-slip conditions along the

solid-fluid interfaces. Thus, once the fin-spacing is set all the points along the curved surface

(y coordinates) have to lie with a certain specified distance of the fin spacing. The

 157

combination of the above two physical phenomena contribute to the fact that the fin profiles

obtained are not tapering downwards, but are trying to form a “cavity” where the fluid can

flow between the fins.

9.18 Description of Maximum Velocity Region

Table 9.2 Average Time to Complete One Evolutionary Optimization Run

Fin Profile Random, min Interactive, min Human
Subjects, min

Deg. 1 372 350 438
Deg. 2 414 314 459
Deg. 3 463 283 443
Deg. 4 532 527 525

From Table 9.2 it is understood that the designer interactive runs were helpful to expedite the

solution towards the global optima. The only exclusion was the fourth degree fin profile

where the average time taken by the random and the designer interactive and the human

subjects’ interaction values were comparable. Nearly 25-35% time reduction was achieved

due to designer interaction for the 2nd and 3rd degree fin profiles. However, the human

subjects’ interaction results were not very encouraging. This is due to the wrong choice of the

 158

initial population, resulting in bad grid generation. The solver is set up in such a way that if it

can’t create the grid with the given fin profile configuration then it has to undergo certain

mutation operation and revisit the grid generation and the solver. This is the reason why the

human subjects evolutionary optimization runs were by-and-large slower when compared to

the other two types.

Conclusion and Recommended Work in this Test Case

This part of the chapter presented the results available from the implementation of

human-guided, progressive interaction scheme. The results establish the importance of

designer interaction especially in a complex problem involving CFD analysis within

optimization. Understanding the problem complexity before inserting the solutions and

visualizing the preliminary results using the solutions that the designer intends to insert in the

population is very important. On doing the preliminary study, the complex iterations due to

the grid generation issues can be sorted out.

 The recommendations for future work includes: conducting more number of

evolutionary optimization runs with 10%, 20%, 30%, 40% and 50% interactive population.

This study will act as a starting place to have the optimum number of designer created

solution in the population. To study the model reduction feasibility in order to reduce the

solver time. As a graphical visualization enhancement, the designer controlled VTK files

should be loaded and visualized in the graphical plugin.

 159

Part (c) – Interactive Nozzle Design

 The results presented in this section are centered on developing the initial population

with high initial fitness values. The goal of this test case is to generated higher initial fitness

by interaction that would guide evolutionary algorithms to determine optimum solutions

much faster, as they proceed. As presented in the other two test cases, a population size of 32

is used in this test case. For the random population all the 32 nozzle designs were generated

at random. For the designer interactive population and human subjects’ population

approximately 10% (i.e., 3 solutions) were created by the interaction. A total of 5

evolutionary runs were conducted on random population, designer interactive population, and

human subjects’ interactive population. The comparison of the fitness values from these runs

are presented in Fig. 9.19.

Fig. 9.19 Comparison of Initial Fitness Values of Nozzle Population

 160

 From Fig. 9.19 it is evident that the average fitness values of the designer generated

population is higher than that of the random population. The proof-of-the-concept results

presented in Fig. 9.19 clearly indicates that the designer interaction can create solutions that

can guide the evolutionary algorithms towards optimum solutions.

Conclusion and Recommendations for Future Work

The prime goal of this test case was to integrate the progressive interaction

framework with a commercial high fidelity CFD solver. This goal was achieved and was

demonstrated using the initial results available. Many design parameters were successfully

inserted to the computational unit during run-time. And the designer interaction increased the

fitness values and hence, the likelihood to progress towards to optima faster. The future work

in this test case include: run more number of runs to establish that the designer with

significant amount of a priori knowledge can always generate a population of nozzles with

higher initial fitness. In addition, evolutionary optimization runs with 20%, 30%, 40% and

50% interactive population can be conducted. The results obtained from the evolutionary

mating events can also be recorded.

 161

Appendix

A.1 Example Setup File for the Nozzle Project for the Nozzle Project

#!/bin/csh -f
cd ./nozzle4/run_0
source /usr/local/starcd/etc/setstar

proam << EOF
x
star
n
n

memory maxvrt 800000
memory maxcel 600000
memory maxncp 8000
memory maxsc2 20000000
memory maxncy 7000
memory maxnbu 200000
v,1,0,0,0
v,2,0,0,36
v,3,5,0,36
v,4,5,0,0
v,5,0.15,0,0
v,6,0.15,0,5
v,7,0.35,0,5
v,8,0.35,0,0
v,9,0.15,0,6.06
v,10,0,0,6.06
v,11,0,0,12.06
v,12,5,0,12.06
v,13,5,0,6.06
v,14,5,0,5
v,15,1.206,0,36
v,16,1.875,0,5
v,17,1.875,0,6.06
v,18,0.99,0,5
v,19,0.99,0,6.06
v,20,1.07,0,6.18245
v,21,1.15,0,6.3049
v,22,1.198,0,6.42735
v,23,1.214,0,6.5498
v,24,1.27,0,6.67224
v,25,1.342,0,6.79469
v,26,1.422,0,6.91714
v,27,1.422,0,7.03959
v,28,1.422,0,7.16204
v,29,1.478,0,7.28449
v,30,1.494,0,7.40694
v,31,1.494,0,7.52939
v,32,1.494,0,7.65184

 162

v,33,1.494,0,7.77428
v,34,1.494,0,7.89673
v,35,1.494,0,8.01918
v,36,1.494,0,8.14163
v,37,1.494,0,8.26408
v,38,1.494,0,8.38653
v,39,1.494,0,8.50898
v,40,1.494,0,8.63143
v,41,1.494,0,8.75388
v,42,1.494,0,8.87633
v,43,1.494,0,8.99877
v,44,1.494,0,9.12122
v,45,1.494,0,9.24367
v,46,1.494,0,9.36612
v,47,1.494,0,9.48857
v,48,1.494,0,9.61102
v,49,1.494,0,9.73347
v,50,1.494,0,9.85592
v,51,1.494,0,9.97837
v,52,1.494,0,10.1008
v,53,1.494,0,10.2233
v,54,1.494,0,10.3457
v,55,1.494,0,10.4682
v,56,1.494,0,10.5906
v,57,1.494,0,10.7131
v,58,1.494,0,10.8355
v,59,1.494,0,10.958
v,60,1.494,0,11.0804
v,61,1.494,0,11.2029
v,62,1.494,0,11.3253
v,63,1.494,0,11.4478
v,64,1.414,0,11.5702
v,65,1.358,0,11.6927
v,66,1.302,0,11.8151
v,67,1.286,0,11.9375
v,68,1.206,0,12.06
v,69,1.19,0,6.06
v,70,1.27,0,6.18245
v,71,1.35,0,6.3049
v,72,1.398,0,6.42735
v,73,1.414,0,6.5498
v,74,1.47,0,6.67224
v,75,1.542,0,6.79469
v,76,1.622,0,6.91714
v,77,1.622,0,7.03959
v,78,1.622,0,7.16204
v,79,1.678,0,7.28449
v,80,1.694,0,7.40694
v,81,1.694,0,7.52939
v,82,1.694,0,7.65184
v,83,1.694,0,7.77428
v,84,1.694,0,7.89673
v,85,1.694,0,8.01918
88 1 694 0 8 38653

 163

v,86,1.694,0,8.14163
v,87,1.694,0,8.26408
v,88,1.694,0,8.38653
v,89,1.694,0,8.50898
v,90,1.694,0,8.63143
v,91,1.694,0,8.75388
v,92,1.694,0,8.87633
v,93,1.694,0,8.99877
v,94,1.694,0,9.12122
v,95,1.694,0,9.24367
v,96,1.694,0,9.36612
v,97,1.694,0,9.48857
v,98,1.694,0,9.61102
v,99,1.694,0,9.73347
v,100,1.694,0,9.85592
v,101,1.694,0,9.97837
v,102,1.694,0,10.1008
v,103,1.694,0,10.2233
v,104,1.694,0,10.3457
v,105,1.694,0,10.4682
v,106,1.694,0,10.5906
v,107,1.694,0,10.7131
v,108,1.694,0,10.8355
v,109,1.694,0,10.958
v,110,1.694,0,11.0804
v,111,1.694,0,11.2029
v,112,1.694,0,11.3253
v,113,1.694,0,11.4478
v,114,1.614,0,11.5702
v,115,1.558,0,11.6927
v,116,1.502,0,11.8151
v,117,1.486,0,11.9375
v,118,1.406,0,12.06
spl,1,vran,19,68,1
spl,2,vran,69,118,1
ctab,4,shel,6
patc,8,7,14,4,53,49
patc,1,10,9,5,260,6
patc,16,17,13,14,15,44
patc,69,118,12,13,64,45
patc,10,11,68,19,128,25
patc,68,15,3,12,256,40
patc,11,2,15,68,513,25
patc,6,9,19,18,22,18
patc,18,19,17,16,22,18
csys,2
ctyp,1
cset,all
vcex,1,,cset,,,local,0,5.34135,0,both,uniform
csys,1
vset all
vmerge vset
c

t fl i

 164

cset news flui
cptable,2,arbit,1,2,4,3,on,0.02
cptype,2
cpcreate cset
cpcheck,,all,,,newset,,fix
cpdel cpset
cset,news,flui
check,cset,,negvol,,newset
cdel,cset
pmat,1,fluid,H2O
dens,cons,997.56
spec,cons,4181.72
lvis,cons,0.0008887
cond,cons,0.62027
turb,ke,1,stan
lowre,off
coke,0.09,1.44,1.92,1.44,-0.33,0.419,1,1.219,0.9,,,
rdef,2,inlet,standard
0,0,18.1386,1,0,997.56
rturb,2,mixlen,0.1,0.0033
rinlet,2,mass,n
*set region,2
*set rmax,0.15
*set rmin,0
*set z,0
cset news flui
live surf create
*get s1,mxct
cset news type s1
cset subs grange,rmin - 0.0001,rmax + 0.0001,,,z - 0.0001, z +
0.0001,2
bshell,region - s1,cset
rdef,3,pressure,standard
piezo,0,n,n,n
rturb,3,zgrad
rtpress,3,temp,,conc
*set region,3
*set rmax,5
*set rmin,0
*set z,36
cset news type s1
cset subs grange,rmin - 0.0001,rmax + 0.0001,,,z - 0.0001, z +
0.0001,2
bshell,region - s1,cset
rdef,4,pressure,standard
piezo,0,n,n,n
rturb,4,zgrad
rtpress,4,temp,,conc
*set region,4
*set rmax,5
*set rmin,0.35
*set z,0
cset news type s1

t b i 0 0001 + 0 0001 0 0001 +

 165

cset subs grange,rmin - 0.0001,rmax + 0.0001,,,z - 0.0001, z +
0.0001,2
bshell,region - s1,cset
rdef,8,symplane,standard
*set region,8
cset news type s1
cset subs grange,,,-0.0001,0.0001,,,1
bshell,region - s1,cset
rdef,9,symplane,standard
*set region,9
cset news type s1
csys,1
local,4,cart,0,0,0,5.34135,0,0,
csys,4
cset subs grange,,,-0.0001,0.0001,,,4
bshell,region - s1,cset
rdef,10,wall,standard
slip,standard,,
*set region,10
cset news type s1
cset subs grange,4.9999,5.0001,,,,,2
bshell,region - s1,cset
csys,1
moni,52131
pres,100000,52131
tdatum,273
iter,1000,0.001
relax,rlvel,0.7
relax,rlp,0.15
relax,rlke,0.7
relax,rlvis,1
wdata,restart,25,0,star.pst
cset news flui
cset dele grange,,,,,4.9999,6.0601,2
cset dele grange,,,,,12.0599,13.06,2
live surf create
*get s2,mxct
cset news type s2
cset dele grange,-0.0001,0.1501,,,4.9,5.1,2
cset dele grange,-0.0001,1.2061,,,12.0599,12.0601,2
cset dele grange,,,,,35.9999,36.0001,2
cdel cset
cset news type s2
ctab,s2 + 1,shell,18,,,,,,,off,,light
cset subs grange,-0.0001,1.2061,,,12.0599,12.0601,2
ctyp,s2 + 1
cmod,cset
cset news type s2
ctab,s2 + 2,shell,19,,,,,,,off,,light
cset subs grange,,,,,35.9999,36.0001,2
ctyp,s2 + 2
cmod,cset
ctab,20,fluid,22,,,,,,,off,,light
t 20

 166

ctyp,20
cset news type s2
cset dele grange,0.1499,0.1501,,,0,6.06,2
cset dele grange,,,-0.0001,0.0001,,,2
cset dele grange,,,-0.0001,0.0001,,,4
cset,add,neighbor,cset
cset,dele,shell
cset,dele,grange,,,,,4.9999,1e6,2
cmod,cset
ctab,30,fluid,32,,,,,,,off,,light
ctyp,30
cset news type s2
cset dele grange,0.1499,0.1501,,,0,6.06,2
cset dele grange,,,-0.0001,0.0001,,,2
cset dele grange,,,-0.0001,0.0001,,,4
cset,add,neighbor,cset
cset,dele,shell
cset,dele,type,20
cmod,cset
ctab,21,fluid,23,,,,,,,off,,light
ctyp,21
cset,news,type s2 + 1
cset,add,neighbor,cset
cset,dele,shell
cset,dele,grange,,,,,12.0599,1e6,2
cmod,cset
ctab,31,fluid,33,,,,,,,off,,light
ctyp,31
cset,news,type s2 + 1
cset,add,neighbor,cset
cset,dele,shell
cset,dele,grange,,,,,0,12.0601,2
cset,dele,grange,1.2059,1e6,,,,,2
cmod,cset
ctab,22,fluid,24,,,,,,,off,,light
ctyp,22
cset,news,type s2 + 2
cset,add,neighbor,cset
cset,dele,shell
cmod,cset
prfield,none,,,user
geom,star.ccm,0.0254,ccm,nobackup
prob,star.prob
save,star.mdl
quit,nosave
EOF
cd ../../

 167

A 2. Fitness Values of First Degree Fin Profile

Average Fitness Value of the Population

Mating
Event
Number Random

population
Designer
population

Human subjects
population

0 0.423222 0.418055 0.417213
5 0.432098 0.42756 0.427465

10 0.439811 0.445821 0.442717
15 0.448007 0.450292 0.451695
20 0.454412 0.466704 0.462633
25 0.463237 0.469594 0.464182
30 0.467993 0.476451 0.471066
35 0.474878 0.477482 0.473765
40 0.478934 0.487503 0.478647
45 0.485431 0.490016 0.474175
50 0.485731 0.486484 0.474562
55 0.486611 0.489542 0.481783
60 0.488104 0.490949 0.480968
65 0.49747 0.493896 0.480719
70 0.501178 0.503501 0.489339
75 0.507308 0.507047 0.495719
80 0.507581 0.515517 0.495812
85 0.507931 0.512311 0.499705
90 0.522248 0.520392 0.516786
95 0.53213 0.528421 0.528399

100 0.534829 0.529072 0.532166
105 0.532343 0.529513 0.528947
110 0.528315 0.529058 0.526141
115 0.530789 0.524518 0.528316
120 0.538729 0.532954 0.540358
125 0.53894 0.532173 0.534921
130 0.53859 0.535409 0.541958
135 0.535336 0.534789 0.542792
140 0.526648 0.527486 0.536869
145 0.527724 0.528494 0.537998

 168

A 3. Fitness Values of Second Degree Fin Profile

Average Fitness Value of the Population

Mating
Event
Number Random

population
Designer
population

Human subjects
population

0 0.431077 0.436878 0.432276
5 0.441984 0.444481 0.442614

10 0.454714 0.45953 0.452543
15 0.456748 0.456892 0.453194
20 0.465545 0.470492 0.468832
25 0.471842 0.470217 0.468678
30 0.475725 0.474142 0.475212
35 0.472097 0.470993 0.471354
40 0.48599 0.487125 0.484061
45 0.48365 0.480557 0.485874
50 0.479419 0.477986 0.488488
55 0.480926 0.476608 0.479143
60 0.480991 0.475971 0.48756
65 0.483523 0.477619 0.494633
70 0.492393 0.482423 0.501853
75 0.500339 0.483076 0.504199
80 0.506906 0.486016 0.512625
85 0.506807 0.483878 0.507386
90 0.51598 0.490007 0.522579
95 0.521685 0.497477 0.530265

100 0.517199 0.502172 0.533056
105 0.518703 0.498831 0.53176
110 0.515843 0.494275 0.523769
115 0.512628 0.495818 0.528085
120 0.519165 0.506888 0.536415
125 0.522627 0.505953 0.534544
130 0.525474 0.50629 0.538092
135 0.522872 0.505215 0.536419
140 0.514316 0.497386 0.523101
145 0.520706 0.49857 0.521116

 169

A 4 Fitness Values of Third Degree Fin Profile

Average Fitness Value of the Population

Mating
Event
Number Random

population
Designer
population

Human subjects
population

0 0.432163 0.43556 0.439559
5 0.442525 0.441002 0.442386

10 0.449598 0.453785 0.449168
15 0.455166 0.455477 0.456854
20 0.454711 0.465557 0.462746
25 0.463289 0.467018 0.473539
30 0.464259 0.472578 0.48252
35 0.468904 0.470555 0.493657
40 0.471572 0.477965 0.498714
45 0.461358 0.479129 0.495005
50 0.463924 0.487821 0.492112
55 0.463583 0.486659 0.493099
60 0.468354 0.493569 0.502676
65 0.477308 0.497628 0.501455
70 0.487647 0.513496 0.509837
75 0.495555 0.517806 0.515613
80 0.499872 0.520328 0.52071
85 0.496218 0.517512 0.521394
90 0.513405 0.529626 0.534251
95 0.524634 0.542726 0.548988

100 0.532048 0.549598 0.557706
105 0.535099 0.545492 0.552053
110 0.532 0.541917 0.547742
115 0.540742 0.547268 0.560956
120 0.552081 0.566073 0.575203
125 0.54797 0.555224 0.572726
130 0.544946 0.56379 0.57706
135 0.543107 0.564934 0.576484
140 0.533884 0.554819 0.564021
145 0.535966 0.55957 0.560655

 170

A 5 Fitness Values of Fourth Degree Fin Profile

Average Fitness Value of the Population

Mating
Event
Number Random

population
Designer
population

Human subjects
population

0 0.391701 0.385164 0.403753
5 0.405872 0.403862 0.425562

10 0.427271 0.423035 0.435079
15 0.436759 0.428253 0.436057
20 0.44597 0.451445 0.443198
25 0.459123 0.466051 0.452766
30 0.446977 0.474707 0.460938
35 0.445508 0.48094 0.457703
40 0.470816 0.497587 0.485891
45 0.473035 0.492731 0.485409
50 0.473024 0.49437 0.477965
55 0.474757 0.491195 0.477346
60 0.475919 0.489656 0.49622
65 0.48498 0.489679 0.504723
70 0.495107 0.4995 0.514144
75 0.503981 0.504241 0.530665
80 0.509556 0.508835 0.54677
85 0.512428 0.510375 0.539464
90 0.521384 0.522313 0.571226
95 0.541434 0.542772 0.60323

100 0.540508 0.53799 0.597235
105 0.536409 0.531671 0.597962
110 0.538147 0.536319 0.603615
115 0.546445 0.537753 0.616146
120 0.55445 0.546867 0.640868
125 0.553212 0.548447 0.643955
130 0.550825 0.549026 0.647985
135 0.557118 0.548058 0.652571
140 0.560397 0.54183 0.642769
145 0.563253 0.534855 0.639796

 171

References

ABET, (1995), “Criteria for Accrediting Programs in Engineering in the United States,”

1995-96 Accreditation Cycle, Accreditation Board in Engineering and Technology, Inc.,
Baltimore, MD.

Anderson, D.E., Lesh, N., Marks, J., Mirtich, B., Ratajczak, D., and Ryall, K., (2000),

“Human-Guided Simple Search,” In Proceedings of AAAI 2000.

Arora, J.S., (1989), “Introduction to Optimum Design,” Mc-Graw Hill Book Company.

Ashlock, D., Walker, J., and Smucker, M., (1999), “Graph Based Genetic Algorithms,”

Proceedings of the Congress on Evolutionary Computation, IEEE Press, vol. 2, pp. 1362-
1368.

Ashlock, D.A., Bryden, K.M., Johnson, P.E., and McCorkle, D.S., (2005), “A Data

Segregation Strategy Using Graph Based Evolutionary Algorithms,” Accepted for
Publication in the International Journal of General Systems.

Ashlock, D.A., (2006), “Evolutionary Computation for Modeling and Optimization,”

Springer.

Ashlock, D.A.., Karthikeyan, B., and Bryden, K.M., (2006), “Non-photorealistic Rendering

of Images as Evolutionary Stained Glass,” Proceedings of the IEEE Congress on
Evolutionary Computation 2006, pp. 7440-7447, July 16-21 2006, Vancouver, BC,
Canada.

Asimov, M., (1962), “Introduction to Design,” Prentice-Hall, Englewood Cliffs, NJ.

Aukstakalnis, S., and Blatner, D., (1992), “Silicon Mirage: The Art and Science of Virtual

Reality,” Peachpit Press, Berkeley.

Back, T., (1996), “Evolutionary Algorithms in Theory and Practice,” Oxford University

Press, New York.

Beazley, D.M., and Lomdahl, P.S., (1996), “Lightweight Computational Steering of Very

Large Scale Molecular Dynamics Simulations,” Presented at SuperComputing,
Pittsburgh, PA.

Bellman, R.E., (1957), “Dynamic Programming,” Princeton University Press, Princeton, NJ.

Birmingham, R., Cleland, G., Driver, R., and Maffin, D., (1997), “Understanding

Engineering Design,” Prentice Hall.

Bloebaum, C.L., Hajela, P., and Sobieszczanski-Sobieski, J., (1992), “Non-hierarchic System

Decomposition in Structural Optimization,” Engineering Optimization, vol. 19, pp. 171-
186.

Blumrich, J.F., (1970), Science, vol. 168, pp. 1551-1554.

Branke, J., Kauβler, T., and Schmeck, H., (2000), “Guiding Multi Objective Evolutionary

Algorithms Towards Interesting Regions,” Technical Report TR No. 399, Institute AIFB,
University of Karlsruhe, Germany.

Branke, J., Kauβler, T., and Schmeck, H., (2001), “Guidance in Evolutionary Multi-objective

Optimization,” Advances in Engineering Software, vol. 32, pp. 499-507.

 172

Branke, J., Deb, K., Dierolf, H., and Osswald, Matthias., (2004), “Finding Knees in Multi-
Objective Optimization,” KanGAL Report Number 2004010.

Bryden, K.M., Ashlock D.A., McCorkle, D.S., and Urban, G.L., (2003), “Optimization of

Heat Transfer Utilizing Graph Based Evolutionary Algorithms,” International Journal of
Heat and Fluid Flow, vol. 24 (2), pp. 267-277.

Bryden, K.M., Ashlock, D.A., and Corns, S.M., (2006), “Graph Based Evolutionary

Algorithms,” IEEE Transactions on Evolutionary Computation, Accepted.

Buhl, H.R., (1960), “Creative Engineering Design,” Iowa State University Press.

Cain, W.D., (1969), “Engineering Product Design,” London Business Books Limited.

Cantu-Paz, E., (2000), “Markov Chain Models of Parallel Genetic Algorithms,” IEEE

Transactions on Evolutionary Computation, vol. 4 (3), pp. 216-226, 2000.

Chandrasekharan, (1989), “A Framework for Design Problem-Solving,” WAID 89,

Workshop on Research Directions for AI in Design.

Chen, W., Allen, J.K., Marvis, D., and Mistree F., (1996), “A Concept Exploration Method

for Determining Robust Top-level Specifications,” Engineering Optimization, vol. 26 (2),
pp. 137-158.

Chin-Hsien, L., Chin-Hsiang, C., and Chun-Yin, W., (2001), “Shape Design for Heat

Conduction Problems Using Curvilinear Grid Generation, Conjugate Gradient, and
Redistribution Methods,” Numerical Heat Transfer - Part A, vol. 39, pp. 487-510.

Chimani, M., Lesh, N., Mitzenmacher, M., Sidner, C., and Tanaka, Hidetoshi, (2004), “A

Case Study in Large Scale Interactive Optimization,” Mitsubishi Electric Research
Laboratories, TR2004-113.

Coello Coello, C.A., Van Veldhuizen, D.A., and Lamont, G.B., (2002), “Evolutionary

Algorithms for Solving Multi-Objective Problems,” Kluwer Academic Publishers.

Collins, T.D., (1998), “Understanding Evolutionary Computer: A Hands-on Approach,” in

WCCI-98.

Cooper, R.G., (1984), “The Performance Impact of Product Innovation Strategies,” European

Journal of Marketing, vol. 18 (5), pp. 5-54.

Coyne, R.D., Rosenman, M.A., Radford, A.D., Balachandran, M., and Gero, J.S., (1990),

“Knowledge Based Design System,” Addison-Wesley, Reading, MA.

Cross, N., (1989), “Engineering Design Method,” John Wiley & Sons, Chichester.

Cvetkovic, D., and Parmee, I.C., (1999), “Designer’s Preferences and Multi-Objective

Preliminary Design Process,” In: Banzhaf, W., Editor, Genetic and Evolutionary
Computation Conference Proceedings, vol. 2, pp. 1504-1509.

Cvetkovic, D., and Parmee, I.C., (2000), “Use of Preferences for GA-based Multi-Objective

Optimization,” In: Parmee, I.C., (Editor), Adaptive Computing and Manufacture, Berlin:
Springer, pp. 249-260.

Dani, T.H., Chu, C.P., and Gadh, R., (1997), “COVIRDS: Shape Modeling in a Virtual

Reality Environment,” 1997 ASME Design Technical Conference and Computers in
Engineering Conference, Sacramento, CA, Sept. 14-17.

Deb, K., (1999), “Solving Goal Programming Problems using Multi-objective Genetic

Algorithms,” Congress on Evolutionary Computation, IEEE, vol. 1, pp. 77-84.

Deb, K., (2001), “Multi-Objective Optimization using Evolutionary Algorithms,” John Wiley

and Sons.

 173

Deb, K and Gupta, H., (2004), “Introducing Robustness in Multi-Objective Optimization,”

KanGAL Report Number 2004016.

Deb, K and Chaudhuri, S., (2005), “I-EMO: An Interactive Evolutionary Multi-Objective

Optimization Tool,” KanGAL Report Number 2005003.

Deitz, D., (1995), “Real Engineering in a Virtual World,” Mechanical Engineering, vol. 117,

pp. 78-85.

Deng, Y.M., Britton, G.A., Lam, Y.C., Tor S.B., and Ma, Y.S., (2002), “Feature-based CAD-

CAE Integration Model for Injection-Molded Product Design,” International Journal of
Production Research, vol. 40 (15), pp. 3737-3750.

Diachin, D., Freitag, L., Heath, D., Herzog, J., Michels, W., and Plassmann, P., (1996),

“Collaborative Virtual Environments Used in the Design of Pollution Control Systems,”
International Journal of Supercomputer Applications and High Performance Computing,
vol. 10 pp. 223-235.

Duvurru, S., and Stephanopouls, G., (1999), “Knowledge-based System Applications in

Engineering Design,” Research at MIT, AI Magazine, vol.10 (3), pp. 79-96.

Ellis, G., (1996), “Digital Clay: Transforming Automobile Design,” IRIS Universe, No. 37,

pp. 28-32.

Engelbrecht, J.J., McCorkle, D.S., and Bryden, K.M., “Optimization Study of a Hydraulic

Mixing Nozzle,” To be Submitted.

Ertas, A., and Jones, J.C., (1996), “The Engineering Design Process,” 2nd edition, John Wiley

& Sons.

Evans, P.T., Vance, J.M., and Dark, V.J., (1999), “Assessing the Effectiveness of Traditional

and Virtual Reality Interfaces in Spherical Mechanism Design,” Journal of Mechanical
Design, vol. 121 (4), pp. 507-514.

Fabbri, G., (1997), “A genetic algorithm for fin profile optimization,” International Journal

of Heat and Mass Transfer, 40 (9), 2165-2172.

Fabbri, G., (1998), “Optimization of Heat Transfer through Finned Dissipaters Cooled by

Laminar Flow,” International Journal of Heat and Fluid Flow, vol. 19, pp. 644-654.

Fan, L.S., and Zhu, C., (1998), “Principles of Gas-Solid Flows,” Cambridge University

Press, Cambridge, United Kingdom.

Fogel, L.J., (1962), “Autonomous Automata,” Industrial Research, vol. 4 (1), pp. 14-19.

Fogel, D.B., (1988), “An Evolutionary Approach to the Traveling Salesman Problem,”

Biological Cybernatics, vol. 60 (2), pp. 139-144.

Fogel, L.J., (1999), “Artificial Intelligence through Simulated Evolution. Forty Years of

Evolutionary Programming,” John Wiley & Sons, New York.

Foster, G.F. and G.S. Dulikravich, (1997), “Three-dimensional aerodynamic shape

optimization and gradient search algorithms,” Journal of Spacecraft Rockets, 34:36-42.

French, M.J., (1985), “Conceptual Design for Engineers,” The Design Council, London.

Furlong, T.J., Vance, J.M., and Larochelle, P.M., (1999), “Spherical Mechanism Synthesis in

Virtual Reality,” Journal of Mechanical Design, vol. 121 (4), pp. 515-520.

Gajda, W.J., and Biles, W.C., (1978), “Engineering Modeling and Computation,” Houghton

Mifflin Company, Boston, 1978.

 174

Garey, M., and Johnson, D., (1979), “Computers and Intractability: A Guide to the Theory of

NP-Completeness,” Freeman.

Geist II, G.A., J.A. Kohl, and P.M. Papadopoulos, (1997), “CUMULVS: providing fault

tolerance, visualization, and steering of parallel applications,” International Journal of
Supercomputer Applications and High Performance Computing, 11:224-235.

Gero, J.S., and Schnier, T., (1995), “Evolving Representations of Design Cases and Their

Use in Creative Design,” Preprints Computational Models of Creative Design, Key
Center of Design Computing, University of Sydney, pp. 343-368.

Gero, J.S., (1997), “Genetic Engineering and Design Problems,” Dasgupta, D., and

Michalewicz, Z., (Eds), Evolutionary Algorithms in Engineering Applications; Springer-
Verlag, pp. 47-68.

Giachetti, R.E., (2004), “A Framework to Review the Information Integration of the

Enterprise,” International Journal of Production Research, vol. 42 (6), pp. 1147-1166.

Glover, F., and Laguna, M., (1997), “Tabu Search,” Kluwer Academic Publishers, Boston,

Massachusetts.

Goldberg, D.E., (1983), “Computer-Aided Gas Pipeline Operation Using Genetic Algorithms

and Rule Learning,” Ph.D Dissertation, University of Michigan.

Goldberg, D.E., (1989), “Genetic Algorithms in Search, Optimization and Machine

Learning,” Addison-Wesley Publishing Company, Reading, Massachusetts.

Gonzalez, R.C., and Woods, R.E., (2002), “Digital Image Processing,” Second Edition,

Prentice Hall.

Gonzalez, R.C., Woods, R.E., and Eddins, S.L., (2004), “Digital Image Processing Using

Matlab,” Prentice Hall.

Hernandez, S., and Fontan, A., (2002), “Practical Applications of Design Optimization,” WIT

Press, UK.

Hill, P.H., (1970), “The Science of Engineering Design,” Holt, Rinehart, and Winston, New

York.

Holland, J.H., (1975), “Adaptation in Natural and Artificial Systems,” University of

Michigan Press, Ann Arbor, MI.

Holt, K., (1983), “Product Innovation Management,” Butterworth, London.

Huang, G., and Bryden, K.M., (2005), “Introducing Virtual Engineering Technology into

Interactive Design Process with High-Fidelity Models,” Proceedings of the Winter
Simulation Conference.

Huang, G., (2006), “An Interactive Design Environment for Coal Piping System,” Doctor of

Philosophy Dissertation, Iowa State University

Jablonowski, D.J., J.D. Bruner, B. Bliss, and R.B. Haber, (1993), “VASE: the visualization

and application steering environment,” Proceedings of Supercomputing’93, 560-569.

Jaluria, Y., (1998), “Design and Optimization of Thermal Systems,” McGraw Hill.

Jayaram, S., Jayaram, U., Wang, Y., Tirumali, H., Lyons, K., and Hart, P., (1999), “VADE:

A Virtual Assembly Design Environment,” IEEE Computer Graphics and Applications,
vol. 19 (6), pp. 44-50.

Jones, J.C., and Thornley, D.G., (Eds), (1963), “Proceedings of the Conference on Design

Methods,” Pergamon Press, Oxford, UK.

 175

Karthikeyan, B., Bryden, K.M., and Ashlock, D. A., (2003), “Visualizing Information Flow

in Graph Based Evolving Population,” Intelligent Engineering Systems Through Artificial
Neural Networks, ANNIE 2003, ASME Press , vol. 13, pp. 299 – 304.

Karthikeyan, B., Bryden, K.M., Ashlock, D.A., (2005), “Low-Impact Image Segmentation

Using Balanced Weighted Voronoi Tessellations,” Intelligent Engineering Systems
Through Artificial Neural Networks, ANNIE 2005, ASME Press, vol. 15, pp. 533-542.

Karthikeyan, B., Ashlock, D.A., and Bryden, K.M., “A Novel Image Segmentation

Technique using Balanced Weighted Voronoi Tessellations,” Submitted to the
International Journal of General Systems (2007)..

Kihonge, J.N., Vance, J.M., and Larochelle, P.M., (2002), “Spatial Mechanism Design in

Virtual Reality with Networking,” Journal of Mechanical Design, vol. 124 (3), pp. 435-
440.

Kirkpatrick, S., Gellatt, C., and Vecchi, M., (1983), “Optimization by Simulated Annealing,”

Science, 220(4598), pp. 671-680.

Klau, G.W., Lesh, N., Marks, J., Mitzenmacher, M., and Schafer, G.T., (2002), “The HuGS

Platform: A Toolkit for Interactive Optimization,” Advanced Visual Interfaces, Trento,
Italy.

Koza, J.R., (1992), “Genetic Programming: On the Programming of Computers by Means of

Natural Selection,” MIT Press, Cambridge, MA.

Koza, J.R., (1994), “Genetic Programming II: Automatic Discovery of Reusable Programs,”

MIT Press, Cambridge, MA.

Kraal, J.C., and Vance, J.M., (2001), “VEMECS: A Virtual Reality Interface for Spherical

Mechanism,” Journal of Engineering Design, vol. 12 (3), pp. 245-254.

Kraemer, E., and Vetter, J., (1998), “Computational Steering,” Proceedings of the Thirty-

First Hawaii International Conference on System Sciences, vol. 7, pp. 137-146.

Lamont, G. B., editor (1993), “Compendium of Parallel Programs of the Intel iPSC

Computer,” Department of Electrical and Computer Engineering, Graduate School of
Engineering, Air Force Institute of Technology, Wright-Patterson AFB, OH 45433.

Lee, T., and Reitz, R.D., (2003), “Response Surface Method Optimization of a High-speed

Direct-injection Diesel Engine Equipped with a Common Rail Injection System,” Journal
of Engineering for Gas Turbines and Power, vol. 125 (2), pp. 541-546.

Liang, J.D., and Green, M., (1994), “JDCAD – A Highly Interactive 3D Modeling System,”

Computers & Graphics, vol. 18 (4), pp. 499-506.

Longacre, K.D., Vance, J.M., and DeVries, R.I., (1996), “A Computer Tool to Facilitate

Cross-attribute Optimization,” Proceedings of the 6th AIAA MAO Symposium, pp. 1275-
1279.

Lotov, A.V., Bushenkov, V.A., and Kamenev, G.K., (2004), “Interactive Decision Maps,”

Kluwer Academic Publishers.

Mahoney, P.D., (1995), “Driving VR,” Computer Graphics World, pp. 22-33.

McAllister, C.D., Simpson, T.W., and Yukish, M., (2000), “Goal Programming Applications

in Multidisciplinary Design Optimization,” 8th AIAA/USAF/NASA/ISSMO Symposium on
Multidisciplinary Analysis and Optimization.

 176

McCorkle, D.S., K.M. Bryden, and C.G. Carmichael, (2003), “A new methodology for
evolutionary optimization of energy systems,” Computer Methods in Applied Mechanics
and Engineering, Accepted for publication.

McCorkle, D.S., Bryden, K.M., and Kirstukas, S.J., (2003), “Building a Foundation for

Power Plant Virtual Engineering,” Proceedings of the 28th International Technical
Conference on Coal Utilization and Fuel Systems, pp. 118-127.

Mena, J.B., and Malpica, J.A., (2003), “Color Image Segmentation Using the Dempster-

Shafer Theory of Evidence for the Fusion of Texture,” ISPRS Archives, vol. 34, Part
3/W8, Munich, Sept. 17-19.

Messac, A., (1996), “Physical Programming: Effective Optimization for Design,” AIAA

Journal, vol. 34 (1), pp. 149-158.

Michalewicz, Z., (1996), “Genetic Algorithms + Data Structures =Evolution Programs,”

Springer-Verlag, 3rd edition.

Michalewicz, Z., and Fogel, D.B., (2000), “How to Solve It: Modern Heuristics,” Springer,

Berlin.

Mistree, F., and Allen, J.K., (1997), “Position Paper Optimization In Decision-based

Design,” DBD Workshop, Orlando, Florida.

Okabe, A., Boots, B., Sugihara, K., and Chiu, S.N., (2000), “Spatial Tessellations – Concepts

and Applications of Voronoi Diagrams,” Second Edition, Wiley Series in Probability and
Statistics.

Osborn, S.W., and Vance, J.M., (1995), “A Virtual Reality Environment for Synthesizing

Spherical Four-bar Mechanisms,” Proceedings of the ASME Design Engineering
Technical Conference, vol. 2, pp. 885-892.

Pahl, G., and Beitz, W., (1984), “Engineering Design,” The Design Council, London.

Papalambros, P.Y., (1994), “Model Reduction and Verification,” Advances in Design

Optimization, Edited by Adeli, H., Chapman & Hall, pp. 109-138.

Parker, S.G. and Johnson, C.R., (1995), “SCIRun: a scientific programming environment for

computational steering,” Proceedings of Supercomputing’95.

Parker, S., Weinstein, D., and Johnson, C.R., (1997), “The SCIRun Computational Steering

Software System,” Modern Software Tools in Scientific Computing, pp. 1-40.

Parmee, I.C., (1990), “Low-head Hydropower Systems,” PhD Thesis, Plymouth Polytechnic.

Parmee, I.C., (2001), “Evolutionary and Adaptive Computation in Engineering Design,”

Springer.

Perles, B. and J.M. Vance, (2002), “Interactive virtual tools for manipulating NURBS

surfaces in a virtual environment,” Journal of Mechanical Design, vol. 124, pp. 158-163.

Rechenberg, I., (1973), “Evolutionsstrategie: Optimierung Technischer Systeme nach

Prinzipien der Biologischen Evolution,” Frommann-Holzboog Verlag.

Reklaitis, G.V., Ravindran, A., and Ragsdell, K.M., (1983), “Engineering Optimization

Methods and Applications,” John Wiley and Sons.

Rittel, H., and Webber, M., (1973), “Dilemmas in a General Theory of Planning,” Policy

Sciences, vol. 4, pp. 155.

Ryken, M.J., and Vance, J.M., (2000), “Applying Virtual Reality Techniques to the

Interactive Stress Analysis of a Tractor Lift Arm,” Finite Elements in Analysis and
Design, vol. 35 (2), pp. 141-155.

 177

Salomon, D., (2002), “A Guide to Data Compression Methods,” Springer-Verlag, New York.

Salomon, D., (2004), “Data Compression – The Complete Reference,” Springer.

Schmitz, B., (1995), “Great expectations: the future of virtual design,” Computer-Aided

Engineering, vol. 14 (10), pp. 68-72.

Seth, A., Su, H., and Vance, J.M., (2006), “SHARP: A System for Haptic Assembly &

Realistic Prototyping,” Proceedings of DETC’06 Computers and Information in
Engineering Conference, Philadelphia, PA.

Shine, W.B., and Eick, C.F., (1997), “Visualizing the Evolution of Genetic Algorithm Search

Process,”

Shukla, R., Dragotti, P.L., Do, Minh., and Vetterli, M., (2002), “Improved Quadtree

Algorithm Based on Joint Coding for Piecewise Smooth Image Compression,”
Proceedings of IEEE International Conference on Multimedia and Expo, Aug 26-29
2002, Lausanne, Switzerland.

Siddall, J.N., (1972), “Analytical Decision-Making in Engineering Design,” Prentice Hall,

New Jersey.

Siddall, J.N., (1979), Transactions of ASME Journal of Mechanical Design, vol. 101, pp.

674-681.

Siddall, J.N., (1982), “Optimal Engineering Design – Principles and Applications,” Marcel

Dekker Inc, New York.

Simon, H. A., (1960), “The New Science of Management Decision,” Harper and Row, New

York.

Simon, H.A., (1969), “The Sciences of the Artificial,” MIT Press, Cambridge, MA.

Simon, H.A., (1984), “The structure of Ill-Structured Problems,” in N. Cross (Ed.),

Development in Design Methodology, John Wiley, Chichester.

Simpson, T.W., Mauery, T.M., Korte, J.J., and Mistree, F., (1998), “Comparison of Response

Surface and Kringing Models for Multidisciplinary Design Optimization,” 7th
AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization,
vol. 1, pp. 381-391.

Skarbek, W., and Koschan, A., (1994), “Color Image Segmentation,” Report, Technical

Universit, Berlin.

Suram, S., Ashlock, D.A., and Bryden, K.M., (2006), “Graph Based Evolutionary

Algorithms for Heat Exchanger Fin Shape Optimization,” Accepted for Publication in the
AIAA/MDAO.

Tan, K.C., Lee, T.H., Khoo, D., and Khor, E.F., (2001), “A Multi-objective Evolutionary

Algorithm Toolbox for Computer-Aided Multi-objective Optimization,” IEEE
Transactions on Systems, Man and Cybernatics-Part B: Cybernatics, vol. 31 (4).

Tappeta, R.V., Renaud, J.E., Messac, A., and Sundarraj, G.J., (2000), “Interactive Physical

Programming: Tradeoff Analysis and Decision Making in Multidisciplinary
Optimization,” AIAA Journal, vol. 38 (5), pp. 917-926.

Trigg, M.A., G.R. Tubby, and A.G. Sheard, (1999), “Automatic genetic optimization

approach to two dimensional blade profile design for steam turbines,” Trans. ASME
Turbomachinery, vol. 121, pp. 11-17.

Urban, G.L., Bryden, K.M., and Ashlock, D.A., (2002), “Engineering Optimization of an

Improved Plancha Stove,” Energy for Sustainable Development, vol. 6 (2), pp. 5-15.

 178

Vance, J.M., Larochelle, P., and Dorozhkin, D., (2002), “VRSPATIAL: Designing Spatial

Mechanisms Using Virtual Reality,” Proceedings of DETC’02.

Van Veldhuizen, D.A., and Lamont, G.B., (2000), “Multiobjective Evolutionary Algorithms:

Analyzing the State-of-the-art,” Evolutionary Computation, vol. 8(2), pp. 125-148.

Vladimir, O.B., Christopher, C., Dipankar, G., Gary, Q., and Garret, N.V., (2002),

“VisualDOC: A Software System for General-purpose Integration and Design
Optimization,” AIAA/ISSMO 2002.

Voland, G., (1999), “Engineering by Design,” Addison Wesley Longman.

Walker, D.J., Dagger, B.K.J., and Roy, R, (1991), “Creative techniques in product and

engineering design – A practical Workbook,” Woodhead Publishing Limited.

Wang, L.H., Shen, W.M., Xie, H., Neelamkavil, J., and Pardasani, A., (2002), “Collaborative

Conceptual Design – State-of-the-art and Future Trends,” Computer-Aided Design, vol.
34 (13), pp. 981-996.

Wasfy, T.M., and Noor, A.K., (2001), “Visualization of CFD Results in Immersive Virtual

Environments,” Advances in Engineering Software, vol. 32 (9), pp. 717-730.

Wasfy, T.M., and Wasfy, A.M., (2003), “Strategy for Effective Visualization of CFD

Datasets in Virtual Environments,” Proceedings of ASME Design Engineering Technical
Conference on Computers and Information in Engineering.

Wegman, E.J., and Symanzik, (2002), “Immersive Projection Technology for Visual Data

Mining,” Journal of Computational and Graphical Statistics, vol. 11 (1), pp. 163-188.

West, D.B., (1996), “Introduction to Graph Theory,” Prentice Hall, Upper Saddle River, NJ.
Whitefield, R.I., Duffy, A.H.B., Coates, G., and Hills, W., (2000), “Coordination Approaches

and Systems – Part I: A Strategic Perspective,” Research in Engineering Design, vol. 12
(1), pp. 48-60.

Winer, E.H., and Bloebaum, C.L., (2001), “Visual Design Steering for Optimization Solution

Improvement,” Structural Multidisciplinary Optimization, vol. 22, pp. 219-229, Springer-
Verlag.

Winer, E.H., and Bloebaum, C.L., (2002), “Development of Visual Design Steering as an

Aid in Large-scale Multidisciplinary Design Optimization. Part I: Method Development,”
Structural Multidisciplinary Optimization, vol. 23, pp. 412-424.

Winer, E.H., and Bloebaum, C.L., (2002), “Development of Visual Design Steering as an

Aid in Large-scale Multidisciplinary Design Optimization. Part II: Method Validation,”
Structural Multidisciplinary Optimization, vol. 23, pp. 426-436.

Woodson, T.T., (1966), “Introduction to Engineering Design,” McGraw-Hill, New York.

Wu, A.S., De Jong, A., Burke, D.S., Grefenstette, J.J., and Ramsey, C.L., (1999), “A Visual

Analysis of Evolutionary Algorithms,” Proceedings of the Congress on Evolutionary
Computation, IEEE Press, vol. 2, pp. 1419-1425.

Xiao, A., and Bryden, K.M., (2004), “Virtual Engineering: A Vision of the Next-Generation

Product Realization Using Virtual Reality Technologies,” Proceedings of DETC/CIE
2004,ASME Design Automation Conference.

Xiao, A., Bryden, K.M., Engelbrecht, J., Huang, G., and McCorkle, D.S., (2004),

“Acceleration Methods in the Interactive Design of A Hydraulic Mixing Nozzle Using
Virtual Engineering Tools,” Proceedings of ASME International Mechanical Engineering
Congress.

179

Xiao, A., Bryden, K.M., and McCorkle, D.S., (2005), “VE-Suite: A Software Framework For
Design-Analysis Integration During Product Realization,” Proceedings of DETC/CIE
2005, 25th Computer and Information in Engineering.

Yang, H., and Xue, D., (2003), “Recent Research on Developing Web-based Manufacturing

Systems: A Review,” International Journal of Production Research, vol. 41 (15), pp.
3601-3629.

Yeh, T.P., (1997), “Applying Virtual Reality Techniques to Engineering Design

Optimization,” PhD Thesis, Iowa State University.

Yeh, T.P., and Vance, J.M., (1998), “Applying Virtual Reality Techniques to Sensitivity-

based Structural Shape Design,” Journal of Mechanical Design, vol. 120 (4), pp. 612-
619.

Yun, H., and Reitz, R.D., (2005), “Combustion Optimization in the Low-temperature Diesel

Combustion Regime,” International Journal of Engine Research, vol. 6 (5), pp. 513-524.

	2007
	A virtual engineering framework to support progressive interaction in engineering design
	Balasubramaniam Karthikeyan
	Recommended Citation

	CoverPage
	Dedication
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Abstract

	Thesis
	CHAPTER 1. INTRODUCTION
	1.1 Elements of Engineering Design
	The three most common methods of designers’ (or analysts’) preferences articulation within the optimization process are a priori, posteriori, or progressive [Van Veldhuizen and Lamont, 2000]. A priori and posteriori interaction are unguided or computer controlled search processes, as the designers have almost no control on the solutions returned by the optimization algorithms other than specifying their preferences before and after the optimization processes respectively. In most cases, the designer accepts feasible solutions presented by the optimization algorithms without a thorough exploration (“what-if” analysis) of various interesting regions of the search space. In contrast, progressive interaction is a guided or designer controlled search, as the designers’ preferences continuously direct the computational process. The preference articulation methods are presented in the following sub-sections.
	1.4 Motivation

	CHAPTER 2. BACKGROUND AND LITERATURE REVIEW
	2.1.2 Diffusion of concepts into engineering design
	2.3 Computers in Engineering Design
	2.3.1 Computers in model generation
	2.3.2 Computers in analysis

	2.4 Virtual Reality in Engineering
	2.5 Virtual Engineering
	2.6 Engineering Optimization
	2.6.1 Example problem
	2.6.2 Optimization techniques

	2.7 Evolutionary Algorithms
	2.7.1 Implementation of Evolutionary Algorithms

	2.8 Interactive Engineering Optimization
	2.8.1 Unguided interactive optimization
	2.8.2 Human guided interactive optimization

	2.9 Summary

	CHAPTER 3. CURRENT TRENDS OF HUMAN INTERACTION IN ENGINEERING DESIGN
	3.1 Human Interaction Systems in Engineering
	3.2 Scope of this Work

	CHAPTER 4. PROBLEM DESCRIPTION
	4.1 Interactive Image Segment Optimization – Problem Description
	4.1.1 Low impact image segmentation

	4.2 Shape Optimization of a Finned Dissipater – Problem Description
	4.2.1 Evolutionary algorithms for fin shape optimization
	4.2.2 Description of fin setup

	4.3 Interactive Analysis and Optimization of Mixing Nozzle – Problem Description
	4.3.1 Evolutionary algorithms for optimum nozzles

	CHAPTER 5. PROGRESSIVE DESIGNER INTERACTION
	5.1 VE-Suite
	5.2 VE-Suite Structure
	5.3 VE-Suite API
	5.3.1 VE-Conductor
	5.3.2 VE-CE
	5.3.3 VE-Xplorer

	5.4 Requirements of Interactive Environment
	5.5 Implementation of Progressive Interaction
	5.5.1 Parameters for interactive optimization
	5.5.2 Computational engine
	5.5.3 Interactive visual analysis

	5.6 Contribution of this Work to VE-Suite
	5.6.1 Inputs to VE-Conductor
	5.6.2 Inputs to VE-CE

	CHAPTER 6. IMPLEMENTATION FOR IMAGE SEGMENTATION AND OPTIMIZATION
	6.1 Designer Interface Module
	6.2 Interactive Optimization Module
	6.3 Interactive Segmentation Visualization

	CHAPTER 7. IMPLEMENTATION OF PROGRESSIVE INTERACTION SYSTEM FOR SHAPE OPTIMIZATION
	7.1 Designer Preference Module
	7.2 Interactive Optimization Module
	7.3 Interactive Visual Analysis

	CHAPTER 8. IMPLEMENTATION OF PROGRESS INTERACTION SYSTEM FOR NOZZLE OPTIMIZATION
	8.1 Designer Preference Module
	8.2 Interactive Optimization Module
	Part (a) – Image Segmentation and Optimization
	Conclusion and Recommendations for Future Work
	Part (b) – Shape Optimization of the Finned Heat Exchanger
	Conclusion and Recommended Work in this Test Case
	Part (c) – Interactive Nozzle Design
	Conclusion and Recommendations for Future Work
	Appendix

	References

